模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2012, Vol. 25 Issue (5): 874-878    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Convergence Analysis and Convergence Rate Estimate of Cellular Genetic Algorithms
LI Jun-Hua, LI Ming
Key Laboratory of Nondestructive Testing of Ministry of Education,Nanchang Hangkong University,Nanchang 330063

Download: PDF (305 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Cellular genetic algorithms (cGAs) are a class of evolutionary algorithms (EAs) with a decentralized population in which the tentative solutions evolve in overlapped neighborhoods. However, there are few theoretical researches for the convergence and the convergence speed of cGA. A Markov chain that models canonical cGA is constructed. Then, the convergence of canonical cGA is deduced based on the absorbing state Markov chain. Next, the convergence rate of canonical cGA is studied. The upper and lower bounds for the number of iterations that canonical cGA gets a globally optimal solution are estimated.
Key wordsCellular Genetic Algorithm      Absorbing State Markov Chain      Convergence      Convergence Rate     
Received: 14 September 2011     
ZTFLH: TP301.6  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI Jun-Hua
LI Ming
Cite this article:   
LI Jun-Hua,LI Ming. Convergence Analysis and Convergence Rate Estimate of Cellular Genetic Algorithms[J]. , 2012, 25(5): 874-878.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2012/V25/I5/874
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn