模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2013, Vol. 26 Issue (9): 885-890    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Mixture Particle PHD Filter Based Multi-Target Visual Tracking
LIN Qing1,2,XU Xiao-Gang1,ZHAN Yong-Zhao1,LIAO Ding-An1,3,YANG Ya-Ping1
1.School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013
2.School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094
3.Changzhou Textile Garment Institute,Changzhou 213164

Download: PDF (853 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the problem that particle filter is poor at consistently maintaining the multi-modality of the target distributions for multi-targets in a variable number of visual tracking,a multi-target visual tracking approach based on mixture particle probability hypothesis density (PHD) filter is proposed. The particles are clustered by the K-means algorithm,the classified particles are labeled and the particle filters are separately used for each classified particles. It improves the accuracy of target states estimation and effectively maintains the multi-modal distribution of the various objectives. The experimental results show that the proposed approach is an effective solution to the appearance,merger,separation and other multi-target tracking problems for the new target.
Key wordsMixture Particle Filter      Probability Hypothesis Density      Multi-Target Tracking      Multi-Modal Distribution     
Received: 17 April 2012     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIN Qing
XU Xiao-Gang
ZHAN Yong-Zhao
LIAO Ding-An
YANG Ya-Ping
Cite this article:   
LIN Qing,XU Xiao-Gang,ZHAN Yong-Zhao等. Mixture Particle PHD Filter Based Multi-Target Visual Tracking[J]. , 2013, 26(9): 885-890.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2013/V26/I9/885
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn