模式识别与人工智能
Friday, March 14, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2013, Vol. 26 Issue (2): 205-210    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Images Segmentation Based on Genetic_Kernel Fuzzy C-Means Clustering Algorithm
JIN Lu,FU Meng-Yin
Integrated Navigation and Intelligent Navigation Laboratory,School of Automation,Beijing Institute of Technology,Beijing 100081

Download: PDF (720 KB)   HTML (0 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the characteristics of infrared images and the sensitivity of fuzzy clustering algorithm to the noise and the initial clustering center,a genetic kernel fuzzy C-Means clustering algorithm(G_KFCM) is presented. The gray values of the infrared images are clustered globally. Then the optimal clustering center and the membership matrix are calculated by the G_KFCM. The image segmentation is performed according to the clustering result and the maximum membership principle. The experimental results show G_KFCM is effective to the infrared images respectively including Gaussian noise,simple or complex background.
Key wordsInfrared Image      Genetic Kernel Fuzzy C-Means Clustering(G_KFCM)      Clustering Center      Membership Matrix     
Received: 13 February 2012     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
JIN Lu
FU Meng-Yin
Cite this article:   
JIN Lu,FU Meng-Yin. Images Segmentation Based on Genetic_Kernel Fuzzy C-Means Clustering Algorithm[J]. , 2013, 26(2): 205-210.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2013/V26/I2/205
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn