模式识别与人工智能
Thursday, Apr. 10, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2013, Vol. 26 Issue (6): 537-542    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
An Improved Particle Filter SLAM Algorithm
WANG Xiao-Hua,YANG Xing-Fang
College of Electronics and Information,Xi′an Polytechnic University,Xi′an 710048

Download: PDF (892 KB)   HTML (0 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The estimation accuracy of the conventional particle filter algorithm is low because the historical information is not fully utilized. Combining the high estimation accuracy of exactly sparse delayed-state filter(ESDF) and the high efficiency of exactly sparse extended information filter(ESEIF),an improved particle filter SLAM algorithm is proposed. In this algorithm,the information matrix of ESDF,maintaining the historical relationship of robot pose and characteristics,improves the accuracy of the estimate,and ESEIF overcomes the defects of robot rotational state and characteristics density.Results of both emulational and factual experiments show that the proposed algorithm is valid and feasible.
Key wordsSimultaneous Localization and Map Building (SALM)      Historical Information      Particle Filter     
Received: 16 October 2012     
ZTFLH: TP242  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Xiao-Hua
YANG Xing-Fang
Cite this article:   
WANG Xiao-Hua,YANG Xing-Fang. An Improved Particle Filter SLAM Algorithm[J]. , 2013, 26(6): 537-542.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2013/V26/I6/537
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn