模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2013, Vol. 26 Issue (7): 623-633    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Adaptive Classification Algorithm for Gradual Concept-Drifting Data
Zhang Jing-Xiang1,2,Wang Shi-Tong1,Deng Zhao-Hong1
1.School of Digital Media,Jiangnan University,Wuxi 214122
2.School of Science,Jiangnan University,Wuxi 214122

Download: PDF (985 KB)   HTML (0 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  At present,the concept-drifting phenomena in various datasets receives considerable attention. Aiming at the classification of concept drift,an adaptive neighbor projection mean discrepancy support vector machine (NMD-SVM) is proposed. The concept of the neighbor projection mean discrepancy in the reproducing kernel Hilbert space is defined to measure the discrepancy between adjacent sub-classifiers,and the distribution characteristics of data are integrated into the process of global optimization. Thus,the adaptability of classification algorithm is enhanced. The experimental results on the simulation and real datasets validate the effectiveness of the proposed algorithm.
Key wordsGradual Concept Drift      Adaptive classification      Support Vector Machine     
Received: 13 August 2012     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Zhang Jing-Xiang
Wang Shi-Tong
Deng Zhao-Hong
Cite this article:   
Zhang Jing-Xiang,Wang Shi-Tong,Deng Zhao-Hong. Adaptive Classification Algorithm for Gradual Concept-Drifting Data[J]. , 2013, 26(7): 623-633.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2013/V26/I7/623
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn