模式识别与人工智能
Thursday, Apr. 10, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2013, Vol. 26 Issue (7): 680-687    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Object Tracking Method Based on Particle Filter and Sparse Representation
YANG Da-Wei1,2,3,CONG Yang1,TANG Yan-Dong1
1.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,
Shenyang 110016
2.University of the Chinese Academy of Sciences,Beijing 100049
3.School of Information Science and Engineering,Shenyang Ligong University,Shenyang 110159

Download: PDF (1843 KB)   HTML (0 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the problem of illumination variation in the object tracking of video image sequence,an object tracking method which uses sparse representation in particle filter frame is proposed based on LBP textual feature of object. The tracking particles of the current frame are generated by the last tracking result according to Gaussian distribution,the sparse representation of each particle to the template subspace is obtained by solving the l1-regularized least squares problem,and the tracking object is determined. Then,particle filter is used to propagate sample distribution in next tracking frame. In the procedure,the template is updated using a new template updating strategy. The experimental results validate the performance and advancement of the proposed method.
Key wordsObject Tracking      Sparse Representation      Local Binary Pattern (LBP)      Particle Filter     
Received: 10 May 2012     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Da-Wei
CONG Yang
TANG Yan-Dong
Cite this article:   
YANG Da-Wei,CONG Yang,TANG Yan-Dong. Object Tracking Method Based on Particle Filter and Sparse Representation[J]. , 2013, 26(7): 680-687.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2013/V26/I7/680
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn