模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (4): 372-377    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Dynamic Granular Support Vector Machine Learning Algorithm
CHENG Feng-Wei1, WANG Wen-Jian1,2 , GUO Hu-Sheng1
1.School of Computer and Information Technology, Shanxi University, Taiyuan 030006
2.Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,Shanxi University, Taiyuan 030006

Download: PDF (449 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Granular support vector machine (GSVM) is effective when dealing with distribution uniform datasets. However, the distribution of the dataset in the real world is unpredictable, and the density is uneven. In this paper, a dynamic granular support vector machine learning algorithm(DGSVM) is proposed. According to the different distribution of the granules, some granules are divided automatically and SVM training is performed on different levels of granule space. The experimental results on benchmark datasets demonstrate that DGSVM algorithm obtains better classification performance compared with GSVM.
Key wordsGranular Support Vector Machine(GSVM)      Uneven Dataset      Distribution      Dynamic Granular Support Vector Machine(DGSVM)     
Received: 12 April 2013     
ZTFLH: TP 181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHENG Feng-Wei
WANG Wen-Jian
GUO Hu-Sheng
Cite this article:   
CHENG Feng-Wei,WANG Wen-Jian,GUO Hu-Sheng. Dynamic Granular Support Vector Machine Learning Algorithm[J]. , 2014, 27(4): 372-377.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I4/372
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn