模式识别与人工智能
Thursday, Apr. 10, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (5): 463-471    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
A Multi-class Feature Selection Algorithm Based on Support Vector Machine
DAI Kun,YU Hong-Yi,LI Qing
School of Information System Engineering, PLA Information Engineering University, Zhengzhou 450002

Download: PDF (1008 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Most existing feature selection algorithms usually select only one feature randomly from the highly correlated feature subset with great contribution to classification,which results in the degradation of data readability and classification performance. To overcome the problem, a multi-class feature selection algorithm based on support vector machine(MFSSVM)is proposed. The proposed feature selection algorithm permits highly correlated features to be selected or removed together, and it allows dimension reduction while obtaining effective features. The experimental results on both simulated datasets and benchmark datasets illustrate the feasibility and effectiveness of the feature set selected by MFSSVM.
Received: 27 May 2013     
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Cite this article:   
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I5/463
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn