模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (6): 533-539    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Particle Swarm Optimization Algorithm with Double-Flight Modes
LI Jing-Yang, WANG Yong, LI Chun-Lei
College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006

Download: PDF (508 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  An optimization algorithm is proposed based on the simulation of flight modes of the real birds, namely particle swarm optimization algorithm with double-flight modes(DMPSO). Particles can use maneuver flight-mode or non-maneuver flight-mode to fly during searching. Each particle chooses its flight-mode according to the feedback of the swarm information and its own state in the search. To test the performance of DMPSO, experiments are carried out on some typical complex high-dimensional optimization problems. The experimental results show that the DMPSO avoids the premature convergence problems and it is effective when solving complex high dimensional optimization problems.
Key wordsParticle Swarm Optimization (PSO)      Double-Flight Mode      Maneuver Flight-Mode      Deciding Factor     
Received: 10 January 2013     
ZTFLH: TP 181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI Jing-Yang
WANG Yong
LI Chun-Lei
Cite this article:   
LI Jing-Yang,WANG Yong,LI Chun-Lei. Particle Swarm Optimization Algorithm with Double-Flight Modes[J]. , 2014, 27(6): 533-539.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I6/533
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn