|
|
SAR Target Configuration Recognition Based on Sparse Representation |
LIU Ming1, WU Yan1, WANG Fan1, ZHANG Qiang1, LI Ming2 |
1School of Electronic Engineering, Xidian University, Xi′an 710071 2National Laboratory of Radar Signal Processing, Xidian University, Xi′an 710071 |
|
|
Abstract Applying sparse representation (SR) to a sample, the sparse vector can be obtained, which not only sufficiently describes the characteristic of the sample, but also has the capability of discriminant. A SAR target configuration recognition algorithm based on SR is proposed. Firstly, Feature extraction is implemented to eliminate the influence of the speckle noise. Then, a dictionary is constructed by all the training samples, and the testing sample is projected onto the dictionary to obtain the sparse vector. Finally, according to the fact that the difference between the samples with the same label and closest azimuth angles is the smallest, the principle of the minimum single sample reconstruction error is established to realize SAR target configuration recognition. The experiments on the MSTAR datasets validate the effectiveness of the proposed algorithm.
|
Received: 12 December 2012
|
|
|
|
|
[1] Novak L M, Owirka G J, Brower W S. Performance of 10-and 20-Target MSE Classifiers. IEEE Trans on Aerospace and Electronic Systems, 2000, 36(4): 1279-1289 [2] Ross T, Worrell S, Velten V, et al. Standard SAR ATR Evaluation Experiments using the MSTAR Public Release Data Set // Proc of the 5th Conference on Society of Photo-Optical Instrumentation Engineers. Orlando, USA, 1998: 566-573 [3] Pham Q H, Ezekiel A, Campbell M T, et al. New End-to-end SAR ATR System // Proc of the 6th Conference on Society of Photo-Optical Instrumentation Engineers. Orlando, USA, 1999: 293-301 [4] Zhang R, Hong J, Ming F. SAR ATR Algorithm Based on CSAR Raw Echo Modeling. Journal of Electronics and Information Technology, 2011, 33(1): 27-32 (in Chinese) (张 锐,洪 峻,明 峰.基于目标CSAR回波模型的SAR自动目标识别算法.电子与信息学报, 2011, 33(1): 27-32) [5] Zhou J X, Shi Z G, Cheng X, et al. Automatic Target Recognition of SAR Images Based on Global Scattering Center Model. IEEE Trans on Geoscience and Remote Sensing, 2011, 49(10): 3713-3729 [6] Hu L P, Liu H W, Wu S J. SAR Target Feature Extraction and Recognition Based on Improved Clustering-Based Discriminant Analysis. Journal of Electronics and Information Technology, 2009, 31(9): 2264-2268 (in Chinese) (胡利平,刘宏伟,吴顺君.基于改进的子类判决分析的SAR目标特征提取与识别.电子与信息学报, 2009, 31(9): 2264-2268) [7] Zhang J, Wang G H, Yang Z Y, et al. An Efficient Two-Dimensional Subclass Discriminant Analysis Approach for SAR Image Recognition. Acta Electronica Sinica, 2010, 38(4): 798-803 (in Chinese) (张 静,王国宏,杨智勇,等.基于二维子分类鉴别分析的SAR图像识别方法研究.电子学报, 2010, 38(4): 798-803) [8] Novak L M, Owirka G J, Brower W S, et al. The Automatic Target Recognition System in SAIP. The Lincoln Laboratory Journal, 1997, 10(2): 187-202 [9] Plumbley M D, Blumensath T, Daudet L, et al. Sparse Representations in Audio and Music: From Coding to Source Separation. Proceedings of the IEEE, 2010, 98(6): 995-1005 [10] Elad M, Figueiredo M A T, Ma Y. On the Role of Sparse and Redundant Representations in Image Processing. Proceedings of the IEEE, 2010, 98(6): 972-982 [11] Wright J, Ma Y, Mairal J, et al. Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of the IEEE, 2010, 98(6): 1031-1044 [12] Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227 [13] He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacianface. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340 [14] Feng H X, Hou B, Jiao L C, et al. SAR Image Despeckling Based on Local Gaussian Model and MAP in NSCT Domain. Acta Electronica Sinica, 2010, 38(4): 811-816 (in Chinese) (凤宏晓,侯 彪,焦李成,等.基于非下采样Contourlet域局部高斯模型和MAP的SAR图像相干斑抑制.电子学报, 2010, 38(4): 811-816) [15] Cheng G, Zhao W, Pan J F. Research on MSTAR SAR Target Recognition Based on Wavelet Analysis and Support Vector Machine. Journal of Image and Graphics, 2009, 14(2): 317-322 (in Chinese) (成 功,赵 巍,潘锦锋.基于小波分解和支持向量机的MSTAR SAR目标分类识别研究.中国图象图形学报, 2009, 14(2): 317-322) [16] Han P, Wu R B, Wang Z H, et al. SAR Automatic Target Recognition Based on KPCA Criterion. Journal of Electronics and Information Technology, 2003, 25(10): 1297-1301 (in Chinese) (韩 萍,吴仁彪,王兆华,等.基于KPCA准则的SAR目标特征提取与识别.电子与信息学报, 2003, 25(10): 1297-1301) [17] Hu L P, Liu H W, Wu S J. SAR Target Feature Extraction and Recognition Based on Two-Stage 2DPCA. Journal of Electronics and Information Technology, 2008, 30(7): 1722-1726 (in Chinese) (胡利平,刘宏伟,吴顺君.基于两级2DPCA的SAR目标特征提取与识别.电子与信息学报, 2008, 30(7): 1722-1726) [18] Donoho D L. Compressed Sensing. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306 [19] Candès E J, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans on Information Theory, 2006, 52(2): 489-509 [20] Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit. SIAM Review, 2001, 43(1): 129-159 [21] Candes E J, Tao T. Decoding by Linear Programming. IEEE Trans on Information Theory, 2005, 51(12): 4203-4215 [22] Zhao Q, Principe J C. Support Vector Machines for SAR Automatic Target Recognition. IEEE Trans on Aerospace and Electronic Systems, 2001, 37(2): 643-654 [23] Zelnik-Manor L, Rosenblum K, Eldar Y C. Dictionary Optimization for Block-Sparse Representations. IEEE Trans on Signal Processing, 2012, 60(5): 2386-2395 [24] Guha T, Ward R K. Learning Sparse Representations for Human Action Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1576-1588 [25] Jafari M G, Plumbley M D. Fast Dictionary Learning for Sparse Representations of Speech Signals. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1025-1031 |
|
|
|