|
|
Variable Influence Space Based Uniformity Metric Method for Solution Sets of Multi-objective Evolutionary Algorithms |
ZHENG Jin-Hua, HUANG Duan, WANG Kang, ZHANG Zuo-Feng |
1.College of Information Engineering, Xiangtan University, Xiangtan 411105 2.Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, Xiangtan University, Xiangtan 411105 |
|
|
Abstract Uniformity Evaluation of solutions is one of the most important issues of performance assessment. The views of facing individuals and facing space are combined to construct a variable influence space of solutions. A variable influence space based uniformity metric method for solution sets of multi-objective evolutionary algorithms is proposed in this paper. The metric can be used to compare the performance of different multi-objective optimization techniques by evaluating the relative degree of uniformity of a solution set in the influence space. Experimental results show the feasibility and effectiveness of the proposed metric.
|
Received: 17 June 2013
|
|
|
|
|
[1] Deb K. Multi-objective Optimization Using Evolutionary Algorithms. New York, USA: John Wiley & Sons, 2001 [2] Gong M G, Jiao L C, Yang D D, et al. Research on Evolutionary Multi-objective Optimization Algorithms. Journal of Software, 2009, 20(2): 271-289 (in Chinese) (公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究.软件学报, 2009, 20(2): 271-289) [3] Li M Q, Yang S X, Zheng J H, et al. ETEA:A Euclidean Minimum Spanning Tree-Based Evolutionary Algorithm for Multi-objective Optimization. Evolutionary Computation, 2014, 22(2): 189-230 [4] Yang S X, Li M Q, Liu X H, et al. A Grid-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans on Evolutionary Computation, 2013, 17(5): 721-736 [5] Coello Coello C A. Evolutionary Multi-objective Optimization: A Historical View of the Field. IEEE Computational Intelligence Ma- gazine, 2006, 1(1): 28-36 [6] Zheng J H. Multi-objective Evolutionary Algorithms and Applications. Beijing, China: Science Press, 2007 (in Chinese) (郑金华.多目标进化算法及其应用.北京:科学出版社, 2007) [7] Van Veldhuizen D A, Lamont G B. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation, 2000, 8(2): 125-147 [8] Schott J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master Dissertation. Cambridge, USA: Massachusetts Institute of Technology, 1995: 199-200 [9] Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197 [10] Farhang-Mehr A, Azarm S. An Information-Theoretic Entropy Me- tric for Assessing Multi-objective Optimization Solution Set Quality. Journal of Mechanical Design, 2004, 125(4): 655-663 [11] Bosman P A N, Thierens D. The Balance between Proximity and Diversity in Multiobjective Evolutionary Algorithms. IEEE Trans on Evolutionary Computation, 2003, 7(2): 174-188 [12] Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271 [13] Deb K, Jain S. Running Performance Metrics for Evolutionary Multi-objective Optimization // Proc of the 4th Asia-Pacific Conference on Simulated Evolution and Learning. Singapore, Singapore, 2002: 13-20 [14] Zeng S Y, Cai Z H, Zhang Q, et al. A Novel Method for Assessing the Diversity of Approximation Pareto Fronts. Journal of Software, 2008, 19(6): 1301-1308 (in Chinese) (曾三友,蔡振华,张 青,等.一种评估近似Pareto前沿多样性的方法.软件学报, 2008, 19(6): 1301-1308) [15] Zitzler E, Brockhoff D, Thiele L. The Hypervolume Indicator Revisited: On the Design of Pareto-Compliant Indicators via Weighted Integration // Proc of the 4th International Conference on Evolutionary Multi-criterion Optimization. Matsushima, Japan, 2007: 862-876 [16] Li M Q, Zheng J H. An Indicator for Assessing the Spread of Solutions in Multi-objective Evolutionary Algorithm. Chinese Journal of Computers, 2011, 34(4): 647-664 (in Chinese) (李密青,郑金华.一种多目标进化算法解集分布广度评价方法.计算机学报, 2011, 34(4): 647-664) [17] Li M Q, Zheng J H, Xiao G X, et al. A Diversity Metric for Multi-objective Evolutionary Algorithm. Pattern Recognition and Artificial Intelligence, 2008, 21(5): 695-703 (in Chinese) (李密青,郑金华,肖桂霞,等.一种多目标进化算法的分布度评价方法.模式识别与人工智能, 2008, 21(5): 695-703) [18] Zitzler E, Knowles J, Thiele L. Quality Assessment of Pareto Set Approximations // Branke J, Deb K, Miettinen K, et al., eds. Multiobjective Optimization. Berlin, Germany: Springer, 2008: 373-404 [19] Zheng J H, Wang K, Li M Q, et al. A Delaunay Triangulation Based Diversity Metric for Solution Set of Multi-objective Evolutio- nary Algorithms. Pattern Recognition and Artificial Intelligence, 2012, 25(6): 885-893 (in Chinese) (郑金华,王 康,李密青,等.基于Delaunay三角剖分的多目标进化算法解集分布度评价指标.模式识别与人工智能, 2012, 25(6): 885-893) [20] Li M Q, Yang S X, Liu X H. Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization. IEEE Trans on Evolutionary Computation, 2014, 18(3): 348-365 [21] Li M Q, Zheng J H, Xiao G X. Uniformity Assessment for Evolutionary Multi-objective Optimization // Proc of the IEEE Congress on Evolutionary Computation. Hong Kong, China, 2008: 625-632 [22] Schütze O, Mostaghim S, Dellnitz M, et al. Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques // Proc of the 2nd International Conference on Evolutionary Multi-criterion Optimization. Faro, Portugal, 2003: 118-132 [23] Coello Coello C A, Cortés N C. Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190 [24] Deb K, Mohan M, Mishra S. Evaluating the ε-Domination Based Multi-objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computation, 2005, 13(4): 501-525 [25] Zhang Q F, Li H. MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition. IEEE Trans on Evolutionary Computation, 2007, 11(6): 712-731 [26] Li H, Zhang Q F. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans on Evolutionary Computation, 2009, 13(2): 284-302 [27] Kukkonen S, Lampinen J. GDE3: The Third Evolution Step of Generalized Differential Evolution // Proc of the IEEE Congress on Evolutionary Computation. Edinburgh, UK, 2005, I: 443-450 [28] Bentley P J, Wakefield J P. Finding Acceptable Solutions in the Pareto-Optimal Range Using Multiobjective Genetic Algorithms // Chawdhry P K, Roy R, Pant R K, eds. Soft Computing in En- gineering Design and Manufacturing. London,UK: Springer, 1998: 231-240 [29] Li M Q, Zheng J H, Li K, et al. Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization // Schaefer R, Cotta C, Koodziej J, et al., eds. Parallel Problem Solving from Nature. Berlin, Germany: Springer, 2010: 647-656 |
|
|
|