模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (11): 977-984    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
PK-SVD Filter for Impulse Noise Based on Non-noisy Pixel Reconstruction
HUANG Yan-Wei, QI Bing-Lu
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108

Download: PDF (1449 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  An improved K-SVD method based on non-noisy pixel reconstruction (PK-SVD) is proposed to filter impulse noise. In the phase of image reconstruction, non-noisy pixels are applied in the construction of optimal function to obtain the reconstructed image and improve the filtering performance, and the optimal function is solved by integrating the hierarchical property into the OMP algorithm. In the phase of dictionary training, PK-SVD uses the iterant K-singular value decomposition to renovate both atoms and their coefficients rather than fixes the coefficients. The simulation results show that compared with the other three methods, PK-SVD obtains the sparsest dictionary and the clearest image with higher peak signal to noise ratio.
Key wordsImpulse Noise Filter      Non-noisy Pixel Reconstruction      K-SVD      Hierarchical OMP      Dictionary Training     
Received: 19 July 2013     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HUANG Yan-Wei
QI Bing-Lu
Cite this article:   
HUANG Yan-Wei,QI Bing-Lu. PK-SVD Filter for Impulse Noise Based on Non-noisy Pixel Reconstruction[J]. , 2014, 27(11): 977-984.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I11/977
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn