[1] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 2017, 542(7639): 115-118.
[2] HAY R J, JOHNS N E, WILLIAMS H C, et al. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology, 2014, 134(6): 1527-1534.
[3] ROGERS H W, WEINSTOCK M A, FELDMAN S R, et al. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatology, 2015, 151(10): 1081-1086.
[4] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[5] 何雪英,韩忠义,魏本征.基于深度卷积神经网络的色素性皮肤病识别分类.计算机应用, 2018, 38(11): 3236-3240.
(HE X Y, HAN Z Y, WEI B Z. Pigmented Skin Lesion Recognition and Classification Based on Deep Convolutional Neural Network. Journal of Computer Applications, 2018, 38(11): 3236-3240.)
[6] LECUN Y, BENGIO Y, HINTON G. Deep Learning. Nature, 2015, 521(7553): 436-444.
[7] 田娟秀,刘国才,谷珊珊,等.医学图像分析深度学习方法研究与挑战.自动化学报, 2018, 44(3): 401-424.
(TIAN J X, LIU G X C, GU S S, et al. Deep Learning in Medical Image Analysis and Its Challenges. Acta Automatica Sinica, 2018, 44(3): 401-424.)
[8] LITJENS G, KOOI T, BEJNORDI B E, et al. A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 2017, 42: 60-88.
[9] XIE F Y, FAN H D, LI Y, et al. Melanoma Classification on Dermoscopy Images Using a Neural Network Ensemble Model. IEEE Transactions on Medical Imaging, 2017, 36(3): 849-858.
[10] HAENSSLE H A, FINK C, SCHNEIDERBAUER R, et al. Man Against Machine: Diagnostic Performance of a Deep Learning Convolutional Neural Network for Dermoscopic Melanoma Recognition in Comparison to 58 Dermatologists. Annals of Oncology, 2018, 29(8): 1836-1842.
[11] CELEBI M E, CODELLA N, HALPERN A. Dermoscopy Image Analysis: Overview and Future Directions. IEEE Journal of Biomedical and Health Informatics, 2019, 23(2): 474-478.
[12] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5): 485-489, 514.
(WANG F Y. Parallel System Methods for Management and Control of Complex Systems. Control and Decision, 2004, 19(5): 485-489, 514.)
[13] WANG F Y. Parallel Control and Nanagement for Intelligent Transportation Systems: Concepts, Architectures, and Applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 630-638.
[14] WANG F Y, ZHENG N N, CAO D P, et al. Parallel Driving in CPSS: A Unified Approach for Transport Automation and Vehicle Intelligence. IEEE/CAA Journal of AutomaticaSinica, 2017, 4(4): 577-587.
[15] LI L, WANG X, WANG K F, et al. Parallel Testing of Vehicle Intelligence via Virtual-Real Interaction. Science Robotics, 2019, 4(28).DOI: 10.1126/scirobotics.aaw4106.
[16] 吕宜生,陈圆圆,金峻臣,等.平行交通:虚实互动的智能交通管理与控制.智能科学与技术学报, 2019, 1(1): 21-33.
(Lv Y S, CHEN Y Y, JIN J C, et al. Parallel Transportation: Virtual-Real Interaction for Intelligent Traffic Management and Control. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 21-33.)
[17] 刘 腾,王 晓,邢 阳,等.基于数字四胞胎的平行驾驶系统及应用.智能科学与技术学报, 2019, 1(1): 40-51.
(LIU T, WANG X, XING Y, et al. Research on Digital Quadruplets in Cyber-Physical-Social Space-Based Parallel Driving. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 40-51.)
[18] WANG F Y, WANG X, LI L X, et al. Steps toward Parallel Intelligence. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4): 345-348.
[19] WANG F Y, ZHANG J J, ZHENG X H, et al. Where Does Alphago Go: From Church-Turing Thesis to Alphago Thesis and Beyond. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2): 113-120.
[20] WANG F Y, YUAN Y, LI J J, et al. From Intelligent Vehicles to Smart Societies: A Parallel Driving Approach. IEEE Transactions on Computational Social Systems, 2018, 5(3): 594-604.
[21] WANG F Y, WANG P, LI J J, et al. Social Transportation: Social Signal and Technology for Transportation Engineering. IEEE Tran-sactions on Computational Social Systems, 2019, 6(1): 2-7.
[22] WANG F Y, ZHANG J J, QIN R, et al. Social Energy: Emerging Token Economy for Energy Production and Consumption. IEEE Transactions on Computational Social Systems, 2019, 6(3): 388-393.
[23] WANG K F, GOU C, ZHENG N N, et al. Parallel Vision for Perception and Understanding of Complex Scenes: Methods, Framework, and Perspectives. Artificial Intelligence Review, 2017, 48(3): 299-329.
[24] GOU C, ZHANG H, WANG K F, et al. Cascade Learning from Adversarial Synthetic Images for Accurate Pupil Detection. Pattern Recognition, 2019, 88: 584-594.
[25] WANG F Y, WONG P K. Intelligent Systems and Technology for Integrative and Predictive Medicine: An ACP Approach. ACM Transactions on Intelligent Systems and Technology(TIST), 2013, 4(2). DOI: 10.1145/2438653.2438667.
[26] 王飞跃,李长贵,国元元,等.平行高特:基于ACP的平行痛风诊疗系统框架.模式识别与人工智能, 2017, 30(12): 1057-1068.
(WANG F Y, LI C G, GUO Y Y, et al. Parallel Gout: An ACP-Based System Framework for Gout Diagnosis and Treatment. Pattern Recognition and Artificial Intelligence, 2017, 30(12): 1057-1068.)
[27] 孟祥冰,王 蓉,张 梅,等.平行感知:ACP 理论在视觉SLAM技术中的应用.指挥与控制学报, 2017, 3(4): 350-358.
(MENG X B, WAGN R, ZHANG M, et al. Parallel Perception: An ACP-Based Approach to Visual SLAM. Journal of Command and Control, 2017, 3(4): 350-358.)
[28] 王飞跃,张 梅,孟祥冰,等.平行手术:基于ACP的智能手术计算方法.模式识别与人工智能, 2017, 30(11): 961-970.
(WANG F Y, ZHANG M, MEGN X B, et al. Parallel Surgery: An ACP-Based Approach for Intelligent Operations. Pattern Recognition and Artificial Intelligence, 2017, 30(11): 961-970.)
[29] WANG F Y, TANG Y, LIU X, et al. Social Education: Opportunities and Challenges in Cyber-Physical-Social Space. IEEE Transactions on Computational Social Systems, 2019, 6(2): 191-196.
[30] ZHANG C, LIU Y H, LI L, et al. Joint Task Difficulties Estimation and Testees Ranking for Intelligence Evaluation. IEEE Tran-sactions on Computational Social Systems, 2019, 6(2): 221-226.
[31] 王坤峰,鲁 越,王雨桐,等.平行图像: 图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7): 577-587.
(WANG K F, LU Y, WANG Y T, et al. Parallel Imaging: A New Theoretical Framework for Image Generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 577-587.)
[32] 王坤峰,苟 超,王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10): 1490-1500.
(WANG K F, GOU C, WANG F Y. Parallel Vision: An ACP-Based Approach to Intelligent Vision Computing. Acta Automatica Sinica, 2016, 42(10): 1490-1500.)
[33] PEZESHK A, PETRICK N, CHEN W, et al. Seamless Lesion Insertion for Data Augmentation in CAD Training. IEEE Transactions on Medical Imaging, 2017, 36(4): 1005-1015.
[34] GOU C, WU Y, WANG K, et al. Learning-by-Synthesis for Accurate Eye Detection // Proc of the 23rd International Conference on Pattern Recognition. Washington, USA: IEEE, 2016: 3362-3367.
[35] GOU C, WU Y, WANG K F, et al. A Joint Cascaded Framework for Simultaneous Eye Detection and Eye State Estimation. Pattern Recognition, 2017, 67: 23-31.
[36] 李 力,林懿伦,曹东璞,等.平行学习——机器学习的一个新型理论框架.自动化学报, 2017, 43(1): 1-8.
(LI L, LIN Y L, CAO D P, et al. Parallel Learning-A New Framework for Machine Learning. Acta Automatica Sinica, 2017, 43(1): 1-8.)
[37] LI L, ZHENG N N, WANG F Y. On the Crossroad of Artificial Intelligence: A Revisit to Alan Turing and Norbert Wiener. IEEE Transactions on Cybernetics, 2019, 49(10): 3618-3626.
[38] GOU C, SHEN T Y, ZHENG W B, et al. Parallel Medical Imaging: A New Data-Knowledge-Driven Evolutionary Framework for Medical Image Analysis[C/OL]. [2019-06-25]. https: //arxiv.org/pdf/1903.04855.pdf.
[39] 刘 昕,王 晓,张卫山,等.平行数据:从大数据到数据智能.模式识别与人工智能, 2017, 30(8): 673-681.
(LIU X, WANG X, ZHANG W S, et al. Parallel Data: From Big Data to Data Intelligence. Pattern Recognition and Artificial Intelligence, 2017, 30(8): 673-681.)
[40] ZHENG N N, LIU Z Y, REN P J, et al. Hybrid-Augmented Intelligence: Collaboration and Cognition. Frontiers of Information Technology and Electronic Engineering, 2017, 18(2): 153-179.
[41] 郑南宁.人工智能新时代.智能科学与技术学报, 2019, 1(1): 1-3.
(ZHENG N N. The New Era of Artificial Intelligence. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 1-3.)
[42] KWASIGROCH A, MIKOAJCZYK A, GROCHOWSKI M. Deep Neural Networks Approach to Skin Lesions Classification-A Comparative Analysis // Proc of the 22nd International Conference on Methods and Models in Automation and Robotics(MMAR). Washington, USA: IEEE, 2017: 1069-1074.
[43] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Ge-nerative Adversarial Nets[M/OL]. [2019-06-25]. https: //arxiv.org/pdf/1406.2661.pdf.
[44] 王坤峰,苟 超,段艳杰,等.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3): 321-332.
(WANG K F, GOU C, DUAN Y J, et al. Generative Adversarial Networks: The State of the Art and Beyond. Acta Automatica Sinica, 2017, 43(3): 321-332.)
[45] BAUR C, ALBARQOUNI S, NAVAB N. MelanoGANs: High Re-
solution Skin Lesion Synthesis with GANs[C/OL]. [2019-06-25]. https: //arxiv.org/pdf/1804.04338v1.pdf.
[46] RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C/OL]. [2019-06-25]. https: //arxiv.org/pdf/1511.06434.pdf.
[47] DENTON E L, CHINTALA S, SZLAM A, et al. Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks // CORTES C, LAWRENCE N D, LEE D, eds. Advances in Neural Information Processing Systems 28. Cambridge, USA: The MIT Press, 2015: 1486-1494.
[48] BISSOTO A, PEREZ F, VALLE E, et al. Skin Lesion Synthesis with Generative Adversarial Networks[C/OL]. [2019-06-25]. https: //arxiv.org/pdf/1902.03253.pdf.
[49] WANG T C, LIU M Y, ZHU J Y, et al. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 8798-8807.
[50] MIKOAJCZYK A, GROCHOWSKI M. Data Augmentation for Improving Deep Learning in Image Classification Problem // Proc of the International Interdisciplinary Ph.D. Workshop. Washington, USA: IEEE, 2018: 117-122.
[51] GALDRAN A, ALVAREZ-GILA A, MEYER M I, et al. Data-Driven Color Augmentation Techniques for Deep Skin Image Analysis[C/OL]. [2019-06-25]. https: //arxiv.org/pdf/1703.03702v1.pdf.
[52] HAEGHEN Y V, NAEYAERT J M A D, LEMAHIEU I, et al. An Imaging System with Calibrated Color Image Acquisition for Use in Dermatology. IEEE Transactions on Medical Imaging, 2000, 19(7): 722-730.
[53] QUINTANA J, GARCIA R, NEUMANN L. A Novel Method for Color Correction in Epiluminescence Microscopy. Computerized Medical Imaging and Graphics, 2011, 35(7/8): 646-652.
[54] ARGENZIANO G, SOYER H, DE GIORGI V, et al. Interactive Atlas of Dermoscopy(Book and CD-ROM). Milan, Italy: EDRA Medical Publishing & New Media, 2000.
[55] MENDONCA T, FERREIRA P M, MARQUES J S, et al. PH2-A Dermoscopic Image Database for Research and Benchmarking // Proc of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington, USA: IEEE, 2013: 5437-5440.
[56] SUN X X, YANG J F, SUN M, et al. A Benchmark for Automatic Visual Classification of Clinical Skin Disease Images // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 206-222.
[57] KAWAHARA J, DANESHVAR S, ARGENZIANO G, et al. Se-ven-Point Checklist and Skin Lesion Classification Using Multi-task Multi-modal Neural Nets. IEEE Journal of Biomedical and Health Informatics, 2018, 23(2): 538-546.
[58] GU Y Y, PARTRIDGE Y P, ZHOU J. A Hyperspectral Dermoscopy Dataset for Melanoma Detection // Proc of the International Workshop on Skin Image Analysis. Berlin, Germany: Springer, 2018: 268-276.
[59] CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin Lesion Analysis toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging(ISBI), Hosted by the International Skin Imaging Collaboration(ISIC) // Proc of the 15th IEEE International Symposium on Biomedical Imaging. Washington, USA: IEEE, 2018: 168-172.
[60] TSCHANDL P, ROSENDAHL C, KITTLER H. The Ham10000 Dataset, A Large Collection of Multi-source Dermatoscopic Images of Common Pigmented Skin Lesions. Scientific Data, 2018, 5. DOI: 10.1038/sdata.2019.161.
[61] GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images Are More Than Pictures, They Are Data. Radiology, 2015, 278(2): 563-577.
[62] YANG J F, SUN X X, LIANG J, et al. Clinical Skin Lesion Diagnosis Using Representations Inspired by Dermatologist Criteria // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 1258-1266.
[63] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2818-2826.
[64] ULLRICH C. Descriptive and Prescriptive Learning Theories // Proc of the 15th IEEE International Symposium on Biomedical Imaging. Washington, USA: IEEE, 2008: 37-42.
[65] HE K M, ZHANG X Y, REN S Q, et al. Identity Mappings in Deep Residual Networks // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 630-645.
[66] TSCHANDL P, ROSENDAHL C, AKAY B N, et al. Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. JAMA Dermatology, 2018. DOI: 10.1001/jamadermatol.2018.4378.
[67] HOLZINGER A, BIEMANN C, PATTICHIS C S, et al. What Do We Need to Build Explainable AI Systems for the Medical Domain?[C/OL]. [2019-06-25]. https: //arxiv.org/pdf/1712.09923.pdf.
[68] PETERS J, JANZING D, SCHLKOPF B. Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, USA: The MIT Press, 2017.
[69] MAIBACH H I. Evidence Based Dermatology. Raleigh, USA: PMPH-USA Limited, 2012.
[70] SHAI A, MAIBACH H I, BARAN R. Handbook of Cosmetic Skin Care. London, UK: Informa UK Ltd, 2009.
[71] BARAN R, MAIBACH H I. Textbook of Cosmetic Dermatology. Boca Raton, USA: Taylor & Francis Group, 2017.
[72] ENGASSER P G, MAIBACH H I. Cosmetics and Dermatology: Bleaching Creams. Journal of the American Academy of Dermatology, 1981, 5(2): 143-147.
[73] NAIK S, LARSEN S B, GOMEZ N C, et al. Inflammatory Memory Sensitizes Skin Epithelial Stem Cells to Tissue Damage. Nature, 2017, 550(7677): 475-480.
[74] KURITA M, ARAOKA T, HISHIDA T, et al. In Vivo Reprogramming of Wound-Resident Cells Generates Skin Epithelial Tissue. Nature, 2018, 561(7722): 243-247.
[75] LAI Y C, DENG J N, LIU R Y, et al. Actively Perceiving and Responsive Soft Robots Enabled by Self-powered, Highly Extensible, And Highly Sensitive Triboelectric Proximity-and Pressure-Sensing Skins. Advanced Materials, 2018, 30(28): 1801114. |