模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2019, Vol. 32 Issue (7): 589-599    DOI: 10.16451/j.cnki.issn1003-6059.201907002
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于多尺度高斯核的分布式正则化回归学习算法
董雪梅1,王洁微1
1.浙江工商大学 统计与数学学院 杭州 310018
Distributed Regularized Regression Learning Algorithm Based on Multi-scale Gaussian Kernels
DONG Xuemei1, WANG Jiewei1
1.School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018

全文: PDF (854 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

针对工业、信息等领域出现的基于较大规模、非平稳变化复杂数据的回归问题,已有算法在计算成本及拟合效果方面无法同时满足要求.因此,文中提出基于多尺度高斯核的分布式正则化回归学习算法.算法中的假设空间为多个具有不同尺度的高斯核生成的再生核Hilbert空间的和空间.考虑到整个数据集划分的不同互斥子集波动程度不同,建立不同组合系数核函数逼近模型.利用最小二乘正则化方法同时独立求解各逼近模型.最后,通过对所得的各个局部估计子加权合成得到整体逼近模型.在2个模拟数据集和4个真实数据集上的实验表明,文中算法既能保证较优的拟合性能,又能降低运行时间.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
董雪梅
王洁微
关键词 多尺度核 核方法 分布式学习 最小二乘正则化回归    
Abstract

The existing algorithms cannot produce satisfactory results with both low calculation cost and good fitting effect, due to the regression problems based on the complex data with large scale and non-stationary variation in industry, information and other fields. Therefore, a distributed regularized regression learning algorithm based on multi-scale Gaussian kernels is proposed. The hypothesis space of the proposed algorithm is a sum space composed of reproducing kernel Hilbert spaces generated by multiple Gaussian kernels with different scales. Since each disjoint subset partitioned from the whole data set with different degree of fluctuation, kernel function approximation models with different combination coefficients are established. According to the least square regularized method, a local estimator is learned from each subset independently in the meantime. Finally, a global approximation model is obtained by weighting all the local estimators. The experimental results on two simulation datasets and four real datasets show that the proposed algorithm reduces the running time successfully with a strong fitting ability compared with the existing algorithms.

Key wordsMulti-scale Kernels    Kernel Method    Distributed Learning    Least Square Regularized Regression   
收稿日期: 2018-12-14     
ZTFLH: TP 181  
基金资助:

国家自然科学基金项目(No.11571031,11701509)、浙江省一流学科A类(浙江工商大学统计学)资助

作者简介: 董雪梅(通讯作者),博士,副研究员,主要研究方向为机器学习、数据挖掘.E-mail:dongxuemei@zjgsu.edu.cn.王洁微,硕士,工程师,主要研究方向为机器学习.E-mail:wangjwhm@qq.com.
引用本文:   
董雪梅,王洁微. 基于多尺度高斯核的分布式正则化回归学习算法[J]. 模式识别与人工智能, 2019, 32(7): 589-599. DONG Xuemei, WANG Jiewei. Distributed Regularized Regression Learning Algorithm Based on Multi-scale Gaussian Kernels. , 2019, 32(7): 589-599.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201907002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2019/V32/I7/589
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn