[1] SHANNON C E. Programming a Computer for Playing Chess // LEVY D, ed. Computer Chess Compendium. Berlin, Germany: Springer, 1988: 2-13.
[2] COOPER S B, VAN LEEUWEN J. Solvable and Unsolvable Pro-blems. London, UK: Penguin Books, 1954.
[3] MCCARTHY J, MINSKY M L, ROCHESTER N, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence[C/OL]. [2020-12-12]. http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf.
[4] BOBROW D G. Natural Language Input for a Computer Problem Solving System[C/OL]. [2020-12-12]. http://hdl.handle.net/1721.1/5922.
[5] WEIZENBAUM J. ELIZA-A Computer Program for the Study of Na-tural Language Communication between Man and Machine. Communications of the ACM, 1966, 9(1): 36-45.
[6] BUCHANAN B, SUTHERLAND G, FEIGENBAUM E A. Heuristic DENDRAL: A Program for Generating Explanatory Hypotheses[C/OL]. [2020-12-12]. https://stacks.stanford.edu/file/druid:pf885vk0607/pf885vk0607.pdf.
[7] DAVIS R. Use of Meta Level Knowledge in the Construction and Maintenance of Large Knowledge Bases. Ph.D. Dissertation. Stanford, USA: Stanford University, 1976.
[8] MCDERMOTT D, DOYLE J. Non-monotonic Logic I. Artificial Intelligence, 1980, 13(1/2): 41-72.
[9] BROOKS R. A Robust Layered Control System for a Mobile Robot. IEEE Journal on Robotics and Automation, 1986, 2(1): 14-23.
[10] OAD Map[EB/OL]. [2020-12-12]. https://www.emse.fr/~beaune/websem/SWRoadmapLee.pdf.
[11] LECUN Y, BENGIO Y, HINTON G. Deep Learning. Nature, 2015, 521(7553): 436-444.
[12] TANG J, ZHANG J, YAO L M, et al. Arnetminer: Extraction and Mining of Academic Social Networks // Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008: 990-998.
[13] WUEST T, WEIMER D, IRGENS C, et al. Machine Learning in Manufacturing: Advantages, Challenges, and Applications. Production and Manufacturing Research, 2016, 4(1): 23-45.
[14] CAMPBELL M, HOANE JR A J, HSU F H. Deep Blue. Artificial intelligence, 2002, 134(1/2): 57-83.
[15] MARKOFF J. Computer Wins on ‘Jeopardy!’:Trivial, It′s Not[EB/OL]. [2020-12-12].https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html.
[16] SILVER D, HUANG A, MADDISON C J, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 2016, 529(7587): 484-489.
[17] BERNER C, BROCKMAN G, CHAN B, et al. Dota 2 with Large Scale Deep Reinforcement Learning[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1912.06680.pdf.
[18] SHAW J, RUDZICZ F, JAMIESON T, et al. Artificial Intelligence and the Implementation Challenge. Journal of Medical Internet Research, 2019, 21(7). DOI: 10.2196/13659.
[19] PEARL J, MACKENZIE D. The Book of Why: The New Science of Cause and Effect. New York, USA: Basic Books, 2018.
[20] KOMPRIDIS N. So We Need Something Else for Reason to Mean. International Journal of Philosophical Studies, 2000, 8(3): 271-295.
[21] GOSWAMI U. Cognitive Development: The Learning Brain. International Journal of Language and Communication Disorders, 2010, 45(2). DOI: 10.3109/13682820903211091.
[22] FURBACH U, HÖLLDOBLER S, RAGNI M, et al. Cognitive Rea-soning: A Personal View. KI-Künstliche Intelligenz, 2019, 33(3): 209-217.
[23] BEATH C, BECERRA-FERNANDEZ I, ROSS J, et al. Finding Value in the Information Explosion. MIT Sloan Management Review, 2012, 53(4): 18-20.
[24] DE RAEDT L, GUNS T, NIJSSEN S. Constraint Programming for Data Mining and Machine Learning // Proc of the 24th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2010, III: 1671-1675.
[25] WANG Q, MAO Z D, WANG B, et al. Knowledge Graph Embe-dding: A Survey of Approaches and Applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
[26] CHOWDHARY K R. Natural Language Processing // CHOWDH-ARY K R, ed. Fundamentals of Artificial Intelligence. Berlin, Germany: Springer, 2020: 603-649.
[27] HAGMANN P, CAMMOUN L, GIGANDET X, et al. Mapping the Structural Core of Human Cerebral Cortex. PLoS Biology, 2008, 6(7). DOI: 10.1371/journal.pbio.0060159.
[28] MACNEILAGE P F, ROGERS L J, VALLORTIGARA G. Origins of the Left and Right Brain. Scientific American, 2009, 301(1): 60-67.
[29] BRESSLER S L, MENON V. Large-Scale Brain Networks in Cognition: Emerging Methods and Principles. Trends in Cognitive Sciences, 2010, 14(6): 277-290.
[30] EVANS J S B T. How Many Dual-Process Theories Do We Need? One, Two, or Many? // EVANS J S B T, FRANKISH K, eds. In Two Minds: Dual Processes and Beyond. Oxford, UK: Oxford University Press, 2009: 33-54.
[31] KUO W J, SJÖSTRÖM T, CHEN Y P, et al. Intuition and Deliberation: Two Systems for Strategizing in the Brain. Science, 2009, 324(5926): 519-522.
[32] MÜLLER K, FAEH C, DIEDERICH F. Fluorine in Pharmaceuticals: Looking beyond Intuition. Science, 2007, 317(5846): 1881-1886.
[33] DEWALL C N, BAUMEISTER R F, MASICAMPO E J. Evidence That Logical Reasoning Depends on Conscious Processing. Consciousness and Cognition, 2008, 17(3): 628-645.
[34] WHARTON C M, GRAFMAN J. Deductive Reasoning and the Brain. Trends in Cognitive Sciences, 1998: 54-59.
[35] STEPHENS R G, DUNN J C, HAYES B K, et al. A Test of Two Processes: The Effect of Training on Deductive and Inductive Reasoning. Cognition, 2020, 199. DOI: 10.1016/j.cognition.2020.104223.
[36] STENNING K, OBERLANDER J. A Cognitive Theory of Graphical and Linguistic Reasoning: Logic and Implementation. Cognitive science, 1995, 19(1): 97-140.
[37] O'KEEFE J, NADEL L. The Hippocampus as a Cognitive Map. Oxford, UK: Clarendon Press, 1978.
[38] STERNBERG R J, DAVIDSON J E. Insight in the Gifted. Educational Psychologist, 1983, 18(1): 51-57.
[39] SALVI C, BRICOLO E, KOUNIOS J, et al. Insight Solutions Are Correct More Often Than Analytic Solutions. Thinking and Reaso-ning, 2016, 22(4): 443-460.
[40] ZHENG N N, LIU Z Y, REN P J, et al. Hybrid-Augmented Inte-lligence: Collaboration and Cognition. Frontiers of Information Technology and Electronic Engineering, 2017, 18(2): 153-179.
[41] CREAMER M, BURGESS P, PATTISON P. Reaction to Trauma: A Cognitive Processing Model. Journal of Abnormal Psychology, 1992, 101(3): 452-459.
[42] HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural Network Design. Boston, USA: PWS Publishing, 2014.
[43] WISE R A, BOZARTH M A. Brain Reward Circuitry: Four Circuit Elements “Wired” in Apparent Series. Brain Research Bulletin, 1984, 12(2): 203-208.
[44] PADMANABHAN A, GEIER C F, ORDAZ S J, et al. Develo-pmental Changes in Brain Function Underlying the Influence of Reward Processing on Inhibitory Control. Developmental Cognitive Neuroscience, 2011, 1(4): 517-529.
[45] SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction. Cambridge, USA: The MIT Press, 2018.
[46] PRESTON J, MARK B. Views into the Chinese Room: New Essays on Searle and Artificial Intelligence. Oxford, UK: Oxford University Press, 2002.
[47] LAVIE N, HIRST A, DE FOCKERTJ W, et al. Load Theory of Selective Attention and Cognitive Control. Journal of Experimental Psychology(General), 2004, 133(3): 339-354.
[48] ALISEDA A. Abductive Reasoning: Challenges Ahead. THEORIA, 2007, 22(3): 261-270.
[49] PAN Y H. Multiple Knowledge Representation of Artificial Intelligence. Engineering, 2020, 6(3): 216-217.
[50] PAN Y H. On Visual Knowledge. Frontiers of Information Techno-logy and Electronic Engineering, 2019, 20(8): 1021-1025.
[51] DAVIS E, MARCUS G. Commonsense Reasoning and Commonsense Knowledge in Artificial Intelligence. Communications of the ACM, 2015, 58(9): 92-103.
[52] LU R, XUE F, ZHOU M H, et al. Occlusion-Shared and Feature-Separated Network for Occlusion Relationship Reasoning // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2019: 10343-10352.
[53] JANIS I L, MANN L. Decision Making: A Psychological Analysis of Conflict, Choice, and Commitment. New York, USA: Free Press, 1977.
[54] BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1): 1-43.
[55] SILVER D, HUBERT T, SCHRITTWIESER J, et al. Mastering Chess and Shogi by Self-play with a General Reinforcement Lear-ning Algorithm[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1712.01815.pdf.
[56] SCHRITTWIESER J, ANTONOGLOU I, HUBERT T, et al. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. Nature, 2020, 588(5839): 604-609.
[57] MCCARTHY J. An Everywhere Continuous Nowhere Differentiable Function. The American Mathematical Monthly, 1953, 60(10): 709.
[58] BENTIVOGLI L, DAGAN I, MAGNINI B. The Recognizing Textual Entailment Challenges: Datasets and Methodologies // IDE N, PUSTEJOVSKY J, eds. Handbook of Linguistic Annotation. Berlin, Germany: Springer, 2017: 1119-1147.
[59] ROEMMELE M, BEJAN C A, GORDON A S. Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning // Proc of the AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning. Palo Alto, USA: AAAI Press, 2011: 90-95.
[60] MOSTAFAZADEH N, ROTH M, LOUIS A, et al. LSDSEM 2017 Shared Task: The Story Cloze Test // Proc of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-Level Semantics. Stroudsburg, USA: ACL, 2017: 46-51.
[61] STORKS S, GAO Q Z, CHAI J Y. Commonsense Reasoning for Natural Language Understanding: A Survey of Benchmarks, Resources, and Approaches[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1904.01172.pdf.
[62] LEVESQUE H J. The Winograd Schema Challenge[C/OL]. [2020-12-12]. http://www.cs.toronto.edu/~hector/Papers/winograd.pdf.
[63] OSTERMANN S, MODI A, ROTH M, et al. Mcscript: A Novel Dataset for Assessing Machine Comprehension Using Script Know-ledge[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1803.05223.pdf.
[64] TALMOR A, HERZIG J, LOURIE N, et al. CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1811.00937.pdf.
[65] BOWMAN S R, ANGELI G, POTTS C, et al. A Large Annotated Corpus for Learning Natural Language Inference[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1508.05326.pdf.
[66] KHOT T, SABHARWAL A, CLARK P. SciTaiL: A Textual Entailment Dataset from Science Question Answering // Proc of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2018: 41-42.
[67] GORDON A S. Commonsense Interpretation of Triangle Behavior // Proc of the 13th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 3719-3725.
[68] ZHANG S, RUDINGER R, DUH K, et al. Ordinal Common-Sense Inference. Transactions of the Association for Computational Linguistics, 2017, 5: 379-395.
[69] RASHKIN H, BOSSELUT A, SAP M, et al. Modeling Naive Psychology of Characters in Simple Commonsense Stories // Proc of the 56th Annual Meeting of the Association for Computational Linguistics(Long Papers). Stroudsburg, USA: ACL, 2018: 2289-2299.
[70] RASHKIN H, SAP M, ALLAWAY E, et al. Event2mind: Commonsense Inference on Events, Intents, and Reactions[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1805.06939.pdf.
[71] WANG A, SINGH A, MICHAEL J, et al. GLUE: A Multi-task Benchmark and Analysis Platform for Natural Language Understanding[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1804.07461.pdf.
[72] BOLT R A. “Put-That-There” Voice and Gesture at the Graphics Interface. ACM SIGGRAPH Computer Graphics, 1980, 14(3): 262-270.
[73] NYGA D, BEETZ M. Cloud-Based Probabilistic Knowledge Ser-vices for Instruction Interpretation // BICCHI A, BURGARD W, eds. Robotics Research. Berlin, Germany: Springer, 2018: 649-664.
[74] SAXENA A, JAIN A, SENER O, et al. RoboBrain: Large-Scale Knowledge Engine for Robots[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1412.0691.pdf.
[75] WANG T, HUANG J Q, ZHANG H W, et al. Visual Commonsense R-CNN // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 10760-10770.
[76] ZAREIAN A, WANG Z C, YOU H X, et al. Learning Visual Commonsense for Robust Scene Graph Generation // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 642-657.
[77] ADITYA S, YANG Y Z, BARAL C, et al. Image Understanding Using Vision and Reasoning through Scene Description Graph. Computer Vision and Image Understanding, 2018, 173: 33-45.
[78] ZELLERS R, BISK Y, FARHADI A, et al. From Recognition to Cognition: Visual Commonsense Reasoning // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 6720-6731.
[79] HOU J Y, WU X X, ZHANG X X, et al. Joint Commonsense and Relation Reasoning for Image and Video Captioning // Proc of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 10973-10980.
[80] HENDRICKS L A, BURNS K, SAENKO K, et al. Women Also Snowboard: Overcoming Bias in Captioning Models // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 793-811.
[81] KUANG K, LI L, GENG Z, et al. Causal Inference. Engineering, 2020, 6(3): 253-263.
[82] KUANG K, CUI P, ATHEY S, et al. Stable Prediction across Unknown Environments // Proc of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2018: 1617-1626.
[83] LUO Z Y, SHA Y C, ZHU K Q, et al. Commonsense Causal Reasoning between Short Texts // Proc of the 15th International Conference on Principles of Knowledge Representation and Reasoning. New York, USA: ACM, 2016: 421-431.
[84] HAVASI C, SPEER R, ARNOLD K, et al. Open Mind Common Sense: Crowd-Sourcing for Common Sense // Proc of the 2nd AAAI Conference on Collaboratively-Built Knowledge Sources and Artificial Intelligence. Palo Alto, USA: AAAI Press, 2010: 53.
[85] GORDON A S, BEJAN C A, SAGAE K. Commonsense Causal Reasoning Using Millions of Personal Stories // Proc of the 25th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2011: 1180-1185.
[86] VERMA S, DICKERSON J, HINES K. Counterfactual Explanations for Machine Learning: A Review[C/OL]. [2020-12-12]. https://arxiv.org/pdf/2010.10596.pdf.
[87] BESSERVE M, MEHRJOU A, SUN R, et al. Counterfactuals Uncover the Modular Structure of Deep Generative Models[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1812.03253.pdf.
[88] KAUSHIK D, HOVY E, LIPTON Z C. Learning the Difference That Makes a Difference with Counterfactually-Augmented Data[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1909.12434v1.pdf.
[89] LOPEZ-PAZ D, NISHIHARA R, CHINTALA S, et al. Discovering Causal Signals in Images // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 58-66.
[90] QI J X, NIU Y L, HUANG J Q, et al. Two Causal Principles for Improving Visual Dialog // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 10860-10869.
[91] TANG K H, NIU Y L, HUANG J Q, et al. Unbiased Scene Graph Generation from Biased Training // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 3716-3725.
[92] YI K X, GAN C, LI Y Z, et al. CLEVRER: Collision Events for Video Representation and Reasoning[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1910.01442.pdf.
[93] DASGUPTA I, WANG J, CHIAPPA S, et al. Causal Reasoning from Meta-Reinforcement Learning[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1901.08162v1.pdf.
[94] REHDER B. A Causal-Model Theory of Conceptual Representation and Categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2003, 29(6): 1141-1159.
[95] GUPTA A, DAVIS L S. Beyond Nouns: Exploiting Prepositions and Comparative Adjectives for Learning Visual Classifiers // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2008: 16-29.
[96] JOHNSON J, HARIHARAN B, VAN DER MAATEN L, et al. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 2901-2910.
[97] YAO B P, LI F F. Grouplet: A Structured Image Representation for Recognizing Human and Object Interactions // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 9-16.
[98] SADEGHI M A, FARHADI A. Recognition Using Visual Phrases // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 1745-1752.
[99] FANG H, GUPTA S, IANDOLA F, et al. From Captions to Visual Concepts and Back // Proc of the IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 1473-1482.
[100] LU C W, KRISHNA R, BERNSTEIN M, et al. Visual Relationship Detection with Language Priors // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 852-869.
[101] VELICˇKOVIC 'P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1904.05811.pdf.
[102] PEREZ E, DE VRIES H, STRUB F, et al. Learning Visual Reasoning without Strong Priors[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1707.03017.pdf.
[103] ZHOU B L, ANDONIAN A, OLIVA A, et al. Temporal Relational Reasoning in Videos // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 803-818.
[104] WATTERS N, ZORAN D, WEBER T, et al. Visual Interaction Networks: Learning a Physics Simulator from Video // GUYON I, LUXBURG U V, BENGIO S, et al., eds. Advances in Neural Information Processing Systems 30. Cambridge, USA: The MIT Press, 2017: 4539-4547.
[105] VAN STEENKISTE S, CHANG M, GREFF K, et al. Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and Their Interactions[C/OL]. [2020-12-12]. https://arxiv.org/pdf/1802.10353.pdf.
[106] CADENE R, BEN-YOUNES H, CORD M, et al. MUREL: Multimodal Relational Reasoning for Visual Question Answering // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 1989-1998.
[107] STONE P, BROOKS R, BRYNJOLFSSON E, et al. Artificial Intelligence and Life in 2030: One Hundred Year Study on Artificial Intelligence[C/OL]. [2020-12-12]. https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf. |