模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (9): 793-805    DOI: 10.16451/j.cnki.issn1003-6059.202309003
基于深度学习的模式分类与检测 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于自引导注意力的双模态校准融合目标检测算法
张惊雷1,2,3, 宫文浩1,2, 贾鑫3
1.天津理工大学 天津市复杂系统控制理论及应用重点实验室 天津 300384;
2.天津理工大学 电气工程与自动化学院 天津 300384;
3.天津理工大学 工程训练中心 天津 300384
Object Detection Algorithm with Dual-Modal Rectification Fusion Based on Self-Guided Attention
ZHANG Jinglei1,2,3, GONG Wenhao1,2, JIA Xin3
1. Tianjin Key Laboratory for Control Theory and Applications in Complicated Industry Systems, Tianjin University of Technology, Tianjin 300384;
2. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384;
3. Engineering Training Center, Tianjin University of Technology, Tianjin 300384

全文: PDF (3392 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了解决传统双模态目标检测方法难以在复杂场景(如大雾、眩光、黑夜)中克服低对比度噪声以及无法有效识别小尺寸目标的问题,文中提出基于自引导注意力的双模态校准融合目标检测算法.首先,设计双模态融合网络,利用通道特征和空间特征校准纠正输入图像(可见光图像与红外图像)中的低对比度噪声,从纠正后的特征中获取互补信息,并准确实现特征融合,提高算法在眩光、黑夜和大雾等场景下的检测精度.然后,构建自引导注意力机制,捕捉图像像素之间的依赖关系,增强不同尺度特征的融合能力,提高算法对于小尺寸目标的检测精度.最后,在行人、行人车辆、航拍车辆三类六种数据集上进行的大量实验表明,文中算法检测精度较高.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张惊雷
宫文浩
贾鑫
关键词 低对比度噪声目标检测双模态校准融合自引导注意力    
Abstract:The traditional dual-modal object detection algorithms struggle to overcome low-contrast noise in complex scenes, such as fog, glare and dark night, and they cannot recognize small-size objects effectively. To solve these problems, an object detection algorithm with dual-modal rectification fusion based on self-guided attention is proposed. Firstly, a dual-modal fusion network is designed to rectify the low-contrast noise in the input images(visible and infrared images) by channel and spatial feature rectification. Consequently, the complementary information is acquired from the rectified features to accurately achieve feature fusion and the detection accuracy of the algorithm in the complex scenes is improved. Secondly, a self-guided attention mechanism is established to learn the dependency among pixels in the images. Thus, the fusion capability of features at different scales and the detection accuracy of the algorithm for small-scale objects are improved. Extensive experiments on six datasets, including pedestrian datasets, pedestrian-vehicle datasets and aerial vehicle datasets, demonstrate the superiority of the proposed approach.
Key wordsLow Contrast Noise    Object Detection    Dual-Modal Rectification Fusion    Self-Guided Attention   
收稿日期: 2023-07-21     
ZTFLH: TP391.41  
基金资助:国家自然科学基金青年项目(No.62302335)资助
通讯作者: 张惊雷,博士,教授,主要研究方向为模式识别、图像处理.E-mail:zhangjinglei@tjut.edu.cn.   
作者简介: 宫文浩,硕士研究生,主要研究方向为图像处理、目标检测.E-mail:gwh@stud.tjut.edu.cn. 贾 鑫,博士,讲师,主要研究方向为机器学习、图像处理、三维重建.E-mail:tjut_jiaxin@email.tjut.edu.cn.
引用本文:   
张惊雷, 宫文浩, 贾鑫. 基于自引导注意力的双模态校准融合目标检测算法[J]. 模式识别与人工智能, 2023, 36(9): 793-805. ZHANG Jinglei, GONG Wenhao, JIA Xin. Object Detection Algorithm with Dual-Modal Rectification Fusion Based on Self-Guided Attention. Pattern Recognition and Artificial Intelligence, 2023, 36(9): 793-805.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202309003      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I9/793
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn