模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (2): 130-140    DOI: 10.16451/j.cnki.issn1003-6059.202202004
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
联合深度图聚类与目标检测的像素级分割算法
方宝富1, 张旭1, 王浩1
1.合肥工业大学 计算机与信息学院 合肥 230601
Pixel?Level Segmentation Algorithm Combining Depth Map Clustering and Object Detection
FANG Baofu1, ZHANG Xu1,WANG Hao1
1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601

全文: PDF (3227 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 获取周围环境中的语义信息是语义同时定位与建图(Simultaneous Localization and Mapping, SLAM)的重要任务,然而,采用语义分割或实例分割网络会影响系统的时间性能,采用目标检测方法又会损失一部分精度.因此,文中提出联合深度图聚类与目标检测的像素级分割算法,在保证实时性的前提下,提高当前语义SLAM系统的定位精度.首先,采用均值滤波算法对深度图的无效点进行修复,使深度信息更真实可靠.然后,分别对RGB图像和对应的深度图像进行目标检测和K-means聚类处理,结合两者结果,得出像素级的物体分割结果.最后,利用上述结果剔除周围环境中的动态点,建立完整、不含动态物体的语义地图.在TUM数据集和真实家居场景中分别进行深度图修复、像素级分割、估计相机轨迹与真实相机轨迹对比实验,结果表明,文中算法具有较好的实时性与鲁棒性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
方宝富
张旭
王浩
关键词 视觉同时定位与建图语义同时定位与建图图像聚类目标检测    
Abstract:Acquiring semantic information in the surrounding environment is an important task of semantic simultaneous localization and mapping(SLAM). However, the time performance of the system is affected by semantic segmentation or instance segmentation, and the accuracy of the system is reduced while adopting object detection methods. Therefore, a pixel?level segmentation algorithm combining depth map clustering and object detection is proposed in this paper. The positioning accuracy of the current semantic SLAM system is improved with the real?time performance of the system guaranteed. Firstly, the mean filtering algorithm is utilized to repair the invalid points of the depth map and thus the depth information is more reliable. Secondly, object detection is performed on RGB images and K?means clustering is employed for corresponding depth maps, and then the pixel?level object segmentation result is obtained by combining the two results. Finally, the dynamic points in the surrounding environment are eliminated by the results described above, and a complete semantic map without dynamic objects is established. Experiments of depth map restoration, pixel?level segmentation, and comparison between the estimated camera trajectory and the real camera trajectory are carried out on TUM dataset and real home scenes. The experimental results show that the proposed algorithm exhibits good real?time performance and robustness.
Key wordsVisual Simultaneous Localization and Mapping    Semantic Simultaneous Localization and Mapping    Image Clustering    Object Detection   
收稿日期: 2021-08-12     
ZTFLH: TP 391  
基金资助:国家自然科学基金项目(No.61872327)、安徽高校协同创新项目(No.GXXT-2019-003)、民航飞行技术与飞行安全重点实验室开放基金项目(No.FZ2020KF02)资助
通讯作者: 方宝富,博士,副教授,主要研究方向为智能机器人系统.E-mail:fangbf@hfut.edu.cn.   
作者简介: 张旭,硕士研究生,主要研究方向为视觉SLAM.E-mail:2019170977@mail.hfut.edu.cn.王浩,博士,教授,主要研究方向为分布式智能系统、机器人.E-mail:jsjxwangh@hfut.edu.cn.
引用本文:   
方宝富, 张旭, 王浩. 联合深度图聚类与目标检测的像素级分割算法[J]. 模式识别与人工智能, 2022, 35(2): 130-140. FANG Baofu, ZHANG Xu,WANG Hao. Pixel?Level Segmentation Algorithm Combining Depth Map Clustering and Object Detection. Pattern Recognition and Artificial Intelligence, 2022, 35(2): 130-140.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202202004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I2/130
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn