模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (12): 1122-1130    DOI: 10.16451/j.cnki.issn1003-6059.202212007
“基于深度学习的图像理解及应用”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于全局多尺度特征融合的伪装目标检测网络
童旭巍1, 张光建1
1.重庆理工大学 两江人工智能学院 重庆 401135
Camouflaged Object Detection Network Based on Global Multi-scale Feature Fusion
TONG Xuwei1, ZHANG Guangjian1
1. School of Liangjiang Artificial Intelligence, Chongqing University of Technology, Chongqing 401135

全文: PDF (1812 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在伪装目标检测中,由于伪装目标的外观与背景相似度极高,很难精确分割伪装目标.针对上下文感知跨级融合网络中,高层次语义信息在向浅层网络融合传递时因被稀释及丢失而导致精度降低的问题,文中提出基于全局多尺度特征融合的伪装目标检测网络.先设计全局增强融合模块,捕捉不同尺度下的上下文信息,再通过不同的融合增强分支,将高层次语义信息输送至浅层网络中,减少多尺度融合过程中特征的丢失.在高层网络中设计定位捕获机制,对伪装目标进行位置信息提取与细化.在浅层网络中对较高分辨率图像进行特征提取与融合,强化高分辨率特征细节信息.在3个基准数据集上的实验表明文中网络性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
童旭巍
张光建
关键词 伪装目标检测高层次语义信息特征融合图像分割    
Abstract:In the detection of camouflaged object, it is difficult to segment camouflaged object accurately due to the high similarity between appearance and backgrounds. In context-aware cross-level fusion network, the high-level semantic information is diluted and lost when it is transmitted to the shallow network fusion, resulting in the reduction of accuracy. Aiming at the problem, an camouflaged object detection(COD) network based on global multi-scale feature fusion(GMF2Net) is proposed. Firstly, the global enhanced fusion module(GEFM) is designed to capture the context information at different scales, and then the high-level semantic information is transmitted to the shallow network through different fusion enhanced branches to reduce the feature loss during multi-scale fusion. The location capture mechanism is designed in the high-level network to extract and refine the location of the camouflaged object, and feature extraction and fusion for high-resolution images are carried out in shallow network to enhance high-resolution feature details. Experiments on three benchmark datasets show that GMF2Net produces better performance.
Key wordsCamouflaged Object Detection    High-Level Semantic Information    Feature Fusion    Image Segmentation   
收稿日期: 2022-08-23     
ZTFLH: TP391.4  
通讯作者: 张光建,硕士,副教授,主要研究方向为智能机器人与系统、智能系统及应用.E-mail:zgj@vip.cqut.edu.cn.   
作者简介: 童旭巍,硕士研究生,主要研究方向为图像处理、机器学习.E-mail:1124694813@qq.com.
引用本文:   
童旭巍, 张光建. 基于全局多尺度特征融合的伪装目标检测网络[J]. 模式识别与人工智能, 2022, 35(12): 1122-1130. TONG Xuwei, ZHANG Guangjian. Camouflaged Object Detection Network Based on Global Multi-scale Feature Fusion. Pattern Recognition and Artificial Intelligence, 2022, 35(12): 1122-1130.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202212007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I12/1122
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn