模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (12): 1089-1100    DOI: 10.16451/j.cnki.issn1003-6059.202212004
“基于深度学习的图像理解及应用”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于相邻特征融合的红外与可见光图像自适应融合网络
徐少平1, 陈晓军1, 罗洁2, 程晓慧1, 肖楠1
1.南昌大学 数学与计算机学院 南昌 330031;
2.南昌大学附属感染病医院 南昌 330006
Adjacent Feature Combination Based Adaptive Fusion Network for Infrared and Visible Images
XU Shaoping1, CHEN Xiaojun1, LUO Jie2, CHENG Xiaohui1, XIAO Nan1
1. School of Mathematics and Computer Sciences, Nanchang University, Nanchang 330031;
2. Infectious Disease Hospital Affiliated to Nanchang University, Nanchang 330006

全文: PDF (2820 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了获得目标边缘清晰且细节丰富的红外与可见光融合图像,以前馈去噪卷积神经网络(Denoising Convolutional Neural Network, DnCNN)的骨干网络为基础,从网络架构和损失函数两方面对其进行全面改进,提出基于相邻特征融合的红外与可见光图像自适应融合网络(Adjacent Feature Combination Based Adaptive Fusion Network, AFCAFNet).具体地,采取扩大通道数及双分支特征交换机制策略将DnCNN前段若干相邻卷积层的特征通道进行充分交叉与融合,增强特征信息的提取与传递能力.同时,取消网络中所有的批量归一化层,提高计算效率,并将原修正线性激活层替换为带泄露线性激活层,改善梯度消失问题.为了更好地适应各种不同场景内容图像的融合,基于VGG16图像分类模型,分别提取红外图像和可见光图像梯度化特征响应值,经过归一化处理后,分别作为红外图像和可见光图像参与构建均方误差、结构化相似度和总变分三种类型损失函数的加权系数.在基准测试数据库上的实验表明,AFCAFNet在主客观评价上均具有一定优势.在各项客观评价指标中综合性能较优,在主观视觉效果上,在特定目标边缘上较清晰、纹理细节也较丰富,符合人眼视觉感知特点.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐少平
陈晓军
罗洁
程晓慧
肖楠
关键词 红外图像可见光图像图像融合相邻特征融合自适应权重    
Abstract:To obtain an infrared and visible fusion image with clear target edges and rich texture details,a fusion network model, adjacent feature combination based adaptive fusion network(AFCAFNet) is proposed based on the classical feed-forward denoising convolutional neural network(DnCNN) backbone network by improving the network architecture and the loss function of the model. The feature channels of several adjacent convolutional layers in the first half of DnCNN network are fully fused by adopting the strategy of expanding the number of channels, and the abilities of the model to extract and transmit feature information are consequently enhanced. All batch normalization layers in the network are removed to improve the computational efficiency, and the original rectified linear unit(ReLU) is replaced with the leaky ReLU to alleviate the gradient disappearance problem. To better handle the fusion of images with different scene contents, the gradient feature responses of infrared and visible images are extracted respectively based on the VGG16 image classification model. After normalization, they are regarded as the weight coefficients for the infrared image and visible image ,respectively. The weight coefficients are applied to three loss functions, namely mean square error, structural similarity and total variation. Experimental results on the benchmark databases show that AFCAFNet holds significant advantages in both subjective and objective evaluations. In addition, AFCAFNet achieves superior overall performance in subjective visual perception with clearer edges and richer texture details for specific targets and it is more in line with the characteristics of human visual perception.
Key wordsInfrared Image    Visible Image    Image Fusion    Adjacent Feature Fusion    Adaptive Weight   
收稿日期: 2022-09-20     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.62162043,61902168)、江西省研究生创新专项资金项目(No.YC2022-s033)资助
通讯作者: 徐少平,博士,教授,主要研究方向为图形图像处理技术、机器视觉、虚拟手术仿真等.E-mail:xushaoping@ncu.edu.cn.   
作者简介: 陈晓军,硕士研究生,主要研究方向为图形图像处理技术.E-mail:401030920025@email.ncu.edu.cn.罗 洁,学士,主要研究方向为医学图像处理技术.E-mail:406100210094@email.ncu.edu.cn.程晓慧,硕士研究生,主要研究方向为图形图像处理技术.E-mail:406100210094@email.ncu.edu.cn.肖 楠,硕士研究生,主要研究方向为图形图像处理技术.E-mail:406100210085@email.ncu.edu.cn.
引用本文:   
徐少平, 陈晓军, 罗洁, 程晓慧, 肖楠. 基于相邻特征融合的红外与可见光图像自适应融合网络[J]. 模式识别与人工智能, 2022, 35(12): 1089-1100. XU Shaoping, CHEN Xiaojun, LUO Jie, CHENG Xiaohui, XIAO Nan. Adjacent Feature Combination Based Adaptive Fusion Network for Infrared and Visible Images. Pattern Recognition and Artificial Intelligence, 2022, 35(12): 1089-1100.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202212004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I12/1089
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn