模式识别与人工智能
2025年4月2日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (1): 1-12    DOI: 10.16451/j.cnki.issn1003-6059.202401001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于三路径网络的医学图像分割方法
蒋清婷1, 叶海良1, 曹飞龙1
1.中国计量大学 理学院 应用数学系 杭州 310018
Medical Image Segmentation Method with Triplet-Path Network
JIANG Qingting1, YE Hailiang1, CAO Feilong1
1. Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018

全文: PDF (1462 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 卷积神经网络由于强大的特征提取能力在医学图像分割任务上取得一定进展,但仍需提升边缘分割的准确性.为此,文中提出基于边缘选择图推理的三路径网络,包括目标定位路径、边缘选择路径和细化路径.在目标定位路径中,设计多尺度特征融合模块,聚合高级特征,实现病变区域的定位.在边缘选择路径中,构造边缘选择图推理模块,用于低级特征的边缘筛选,并进行图推理,保证病变区域的边缘形状.在细化路径中,建立渐进式组级细化模块,逐步细化不同尺度特征的结构信息与细节信息.此外,引入融合加权Focal Tversky 损失和加权交并比损失的复合损失,减轻类不平衡的影响.在公开数据集上的实验表明,文中方法性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋清婷
叶海良
曹飞龙
关键词 图神经网络医学图像分割深度学习边缘学习    
Abstract:Convolutional neural networks make certain progress in medical image segmentation tasks due to their powerful feature extraction capabilities. However, the accuracy of edge segmentation still needs to be improved. To address this problem, a triplet-path network based on edge selection graph reasoning is proposed in this paper, including the target localization path, edge selection path and refinement path. In the target localization path, a multi-scale feature fusion module is designed to aggregate high-level features for the localization of lesion regions. In the edge selection path, an edge-selective graph reasoning module is constructed for edge screening of low-level features and graph reasoning to ensure the edge shape of the relevant lesion region. In the refinement path, a progressive group level refinement module is established to refine the structure information and details of different scale features. Moreover, a composite loss fusing weighted Focal Tversky loss and a weighted intersection over union loss is introduced to mitigate the effects of class imbalance. Experimental results on public datasets demonstrate the superior performance of the proposed method.
Key wordsGraph Neural Networks    Medical Image Segmentation    Deep Learning    Edge Learning   
收稿日期: 2023-11-02     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.62006215,62176244)资助
通讯作者: 叶海良,博士,讲师.主要研究方向为深度学习、图神经网络、图像处理、点云分析等.E-mail:yhl575@163.com.   
作者简介: 蒋清婷,硕士研究生,主要研究方向为深度学习、图神经网络、医学图像处理.E-mail:jqt0723@163.com.曹飞龙,博士,教授,主要研究方向为深度学习、图像处理等.E-mail:icteam@163.com.
引用本文:   
蒋清婷, 叶海良, 曹飞龙. 基于三路径网络的医学图像分割方法[J]. 模式识别与人工智能, 2024, 37(1): 1-12. JIANG Qingting, YE Hailiang, CAO Feilong. Medical Image Segmentation Method with Triplet-Path Network. Pattern Recognition and Artificial Intelligence, 2024, 37(1): 1-12.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202401001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I1/1
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn