模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (1): 13-26    DOI: 10.16451/j.cnki.issn1003-6059.202401002
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
面向序列诊断的强化计算机自适应测验方法
刘子瑞1, 吴金泽2, 姚方舟1, 刘淇1, 陈恩红1, 沙晶2, 王士进2, 苏喻3
1.中国科学技术大学 计算机科学与技术学院 合肥 230027;
2.科大讯飞股份有限公司 合肥 230088;
3.合肥师范学院 计算机与人工智能学院 合肥 230061
Computerized Adaptive Testing Method Based on Reinforcement Learning for Series Diagnosis
LIU Zirui1, WU Jinze2, YAO Fangzhou1, LIU Qi1, CHEN Enhong1, SHA Jing2, WANG Shijin2, SU Yu3
1. School of Computer Science and Technology, University of Sci-ence and Technology of China, Hefei 230027;
2. iFLYTEK Co., Ltd, Hefei 230088;
3. School of Computer and Artificial Intelligence, Hefei Normal University, Hefei 230061

全文: PDF (1169 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 计算机自适应测验旨在根据学生历史表现为学生选择合适的题目,快速有效地测量学生的真实能力.然而在智能教育场景下,现有自适应测验策略仍存在目标复杂和知识稀疏等问题.为此,文中构建用于智能场景的可精准测评学生知识能力的面向序列诊断的强化计算机自适应测验方法,包括基于序列诊断的学生模拟器和学生画像模型,并针对真实场景中自适应测验的目标复杂性,设计薄弱点准确率、预测表现耦合、自适应测验时长、测验异常率和测验的难度结构这5个评价指标.进一步地,提出基于强化学习的计算机自适应测验选题策略,利用双通道自注意力学习及矛盾学习模块缓解知识稀疏的问题.真实数据上的实验表明,文中选题策略不仅可高效测量学生真实能力,还可优化学生的作答体验,同时选择的题目也具有一定的可解释性,从而为智能教育场景下的计算机自适应测验提供一个可行方案.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子瑞
吴金泽
姚方舟
刘淇
陈恩红
沙晶
王士进
苏喻
关键词 智能教育个性化教育计算机自适应测验强化学习Q学习    
Abstract:Computerized adaptive testing is designed to select appropriate questions for students based on their historical performance, thereby measuring their actual ability quickly and effectively. However, in intelligent education scenarios, the existing selection strategy of traditional computerized adaptive testing is still faced with some problems such as target complexity and knowledge sparseness. To solve these problems, a computerized adaptive testing method based on reinforcement learning for series diagnosis is proposed in this paper to accurately assess students' knowledge proficiency for intelligent scenarios. A student simulator and a student portrait model based on series diagnosis model are adopted. To address the complexity of computerized adaptive testing goals in real-world scenarios, five evaluation indicators are designed, including accuracy of weak points, coupling of prediction performance, adaptive testing duration, testing anomaly rate and testing difficulty structure. Furthermore, a selection strategy for reinforcement learning based computerized adaptive testing is proposed. The dual-channel self-attention learning module and the contradiction learning module are utilized to ameliorate knowledge sparseness problem. Experiments on real datasets show that the proposed selection strategy not only efficiently measures students' actual abilities, but also optimizes their answering experience. The selected questions exhibit a certain level of interpretability, and the method provides a feasible solution for computerized adaptive testing in intelligent education scenarios.
Key wordsIntelligent Education    Personalized Education    Computerized Adaptive Testing    Reinforcement Learning    Q Learning   
收稿日期: 2023-09-07     
ZTFLH: G434  
基金资助:国家重点研发计划项目(No.2022YFC3303504)资助
通讯作者: 陈恩红,博士,教授,主要研究方向为机器学习、数据挖掘、社会网络、个性化推荐系统.E-mail:cheneh@ustc.edu.cn.   
作者简介: 刘子瑞,硕士研究生,主要研究方向为数据挖掘、智慧教育.E-mail:liuzirui@mail.ustc.edu.cn. 吴金泽,硕士,工程师,主要研究方向为自然语言处理、智慧教育、联邦学习.E-mail:hxwjz@mail.ustc.edu.cn. 姚方舟,博士研究生,主要研究方向为教育数据挖掘、数据采样.E-mail:fangzhouyao@mail.ustc.edu.cn. 刘淇,博士,教授,主要研究方向为数据挖掘、知识发现、机器学习方法及其应用.E-mail:qiliuql@ustc.edu.cn.沙晶,硕士,工程师,主要研究方向为自然语言处理、智慧教育.E-mail:jingsha@iflytek.com.王士进,博士,高级工程师,主要研究方向为语音技术、自然语言处理、智慧教育.E-mail:sjwang3@iflytek.com. 苏喻,博士研究生,副教授,主要研究方向为数据挖掘、图像识别.E-mail:yusu@hfnu.edu.cn.
引用本文:   
刘子瑞, 吴金泽, 姚方舟, 刘淇, 陈恩红, 沙晶, 王士进, 苏喻. 面向序列诊断的强化计算机自适应测验方法[J]. 模式识别与人工智能, 2024, 37(1): 13-26. LIU Zirui, WU Jinze, YAO Fangzhou, LIU Qi, CHEN Enhong, SHA Jing, WANG Shijin, SU Yu. Computerized Adaptive Testing Method Based on Reinforcement Learning for Series Diagnosis. Pattern Recognition and Artificial Intelligence, 2024, 37(1): 13-26.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202401002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I1/13
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn