Abstract:Differential evolution (DE) is a heuristic global optimization technique based on population. It is robust for real parameter optimization. To speed up the optimization and overcome the premature convergence of the heuristic optimization technique, many modifications are made to DE. The basic version of DE and its modifications are presented, and their advantages and disadvantages are also discussed. Some issues for further research on DE are addressed.
[1] Lopez C I L, van Willigenburg L G, van Straten G. Efficient Differential Evolution Algorithms for Multimodal Optimal Control Problems. Applied Soft Computing, 2003, 3(2): 97-122 [2] Storn R, Price K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 1997, 11(4): 341-359 [3] Storn R, Price K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report, TR-95-012, Berkeley, USA: University of California. International Computer Science Institute, 1995 [4] Liu Mingguang. Differential Evolution Algorithms and Modification. Systems Engineering, 2005, 23(2): 108-111 (in Chinese) (刘明广.差异演化算法及其改进.系统工程, 2005, 23(2): 108-111) [5] Xie Xiaofeng, Zhang Wenjun, Zhang Guorui, et al. Empirical Study of Differential Evolution. Control and Decision, 2004, 19(1): 49-52,56 (in Chinese) (谢晓锋,张文俊,张国瑞,等.差异演化的实验研究.控制与决策, 2004, 19(1): 49-52,56) [6] Vesterstrom J, Thomsen R. A Comparative Study of Differential Evolution Particle Swarm Optimization and Evolutionary Algorithms on Numerical Benchmark Problems // Proc of the IEEE Congress on Evolutionary Computation. Piscataway, USA, 2004, Ⅱ: 1980-1987 [7] Kim H K, Chong J K, Park K Y, et al. Differential Evolution Strategy for Constrained Global Optimization and Application to Practical Engineering Problems. IEEE Trans on Magnetics, 2007, 43(4): 1565-1568 [8] Omran M G H, Engelbrecht A P. SelfAdaptive Differential Evolution Methods for Unsupervised Image Classification // Proc of the IEEE Conference on Cybernetics and Intelligent Systems. Bangkok, Thailand, 2006: 1-6 [9] Zhang Renqian, Ding Jianxun. NonLinear Optimal Control of Manufacturing System Based on Modified Differential Evolution // Proc of the IMACS Multiconference on Computational Engineering in Systems Applications. Beijing, China, 2006: 1797-1803 [10] Dhahri H, Alimi A M. The Modified Differential Evolution and the RBF (MDERBF) Neural Network for Time Series Prediction // Proc of the International Joint Conference on Neural Networks. Vancouver, USA, 2006: 2938-2943 [11] Yang Shiwen, Gan Y B, Qing Anyong. Sideband Suppression in TimeModulated Linear Arrays by the Differential Evolution Algorithm. IEEE Trans on Antennas and Wireless Propagation Letters, 2002, 1(1): 173-175 [12] Massa A, Pastorino M, Randazzo A. Optimization of the Directivity of a Monopulse Antenna with a Subarray Weighting by a Hybrid Differential Evolution Method. IEEE Trans on Antennas and Wireless Propagation Letters, 2006, 5(1): 155-158 [13] Fan Yu, Jin Ronghong, Geng Junping, et al. A Hybrid Optimized Algorithm Based on Differential Evolution and Genetic Algorithm and Its Applications in Pattern Synthesis of Antenna Arrays. Acta Electronica Sinica, 2004, 32(12): 1997-2000 (in Chinese) (范 瑜,金荣洪,耿军平,等.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用.电子学报, 2004, 32(12): 1997-2000) [14] Wu Lianghong, Wang Yaonan, Yuan Xiaofang, et al. Differential Evolution Algorithm with Adaptive Second Mutation. Control and Decision, 2006, 21(8): 898-902 (in Chinese) (吴亮红,王耀南,袁小芳,等.自适应二次变异差分进化算法.控制与决策, 2006, 21(8): 898-902) [15] Su C T, Lee C S. Network Reconfiguration of Distribution Systems Using Improved MixedInteger Hybrid Differential Evolution. IEEE Trans on Power Delivery Review, 2002, 22(12): 60-66 [16] Zhai Jie, Wang Chunfeng, Li Guangquan. A Portfolio Management Model Based on Differential Evolution Algorithm. Journal of Tianjin University: Science and Technology, 2002, 35(3): 304-308 (in Chinese) (翟 捷,王春峰,李光泉.基于差分进化方法的投资组合管理模型.天津大学学报:自然科学与工程技术版, 2002, 35(3): 304-308) [17] Onwubolu G C, Babu B V. New Optimization Techniques in Engineering. Berlin, Germany: SpringerVerlag, 2004 [18] Yang Qiwen, Jiang Jingping, Qu Zhaoxia, et al. Improving Genetic Algorithms by Using Logic Operation. Control and Decision, 2002, 15(4): 510-512 (in Chinese) (杨启文,蒋静坪,曲朝霞,等.应用逻辑操作改善遗传算法性能.控制与决策, 2000, 15(4): 510-512) [19] Storn R. On the Usage of Differential Evolution for Function Optimization //Proc of the Biennial Conference of the North American on Fuzzy Information Processing Society. Berkeley, USA, 1996: 519-523 [20] Chang C S, Xu D Y. Differential Evolution Based Tuning of Fuzzy Automatic Train Operation for Mass Rapid Transit System. IEE Proc—Electric Power Applications, 2000, 147(3): 206-212 [21] Mendes R, Mohais A S. DynDE: A Differential Evolution for Dynamic Optimization Problems // Proc of the Congress on Evolutionary Computation. Edinburgh, UK, 2005, Ⅲ: 2808-2815 [22] Tomislav . Sensitivity of Differential Evolution Algorithm to Values of Control Parameters // Proc of the International Conference on Artificial Intelligence. Las Vegas, USA, 2002: 1087-1093 [23] Das S, Konar A, Chakraborty U K. Improved Differential Evolution Algorithms for Handling Noisy Optimization Problems // Proc of the Congress on Evolutionary Computation. Edinburgh, UK, 2005, Ⅱ: 1691-1698 [24] Brest J, Zumer V, Maucec M S. SelfAdaptive Differential Evolution Algorithm in Constrained RealParameter Optimization // Proc of the Congress on Evolutionary Computation. Vancouver, USA, 2006: 215-222 [25] Nobakhti A, Wang Hong. CoEvolutionary SelfAdaptive Differential Evolution with a UniformDistribution Update Rule // Proc of the IEEE International Symposium on Intelligent Control. Munich, Germany, 2006: 1264-1269 [26] Nobakhti A, Wang Hong. A SelfAdaptive Differential Evolution with Application on the ALSTOM Gasifier // Proc of the American Control Conference. Minneapolis, USA, 2006: 4489-4494 [27] Liu Junhong, Lampinen J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing: A Fusion of Foundations, Methodologies and Applications, 2005, 9(6): 448-462 [28] Fan Huiyuan, Lampinen J. A Trigonometric Mutation Operation to Differential Evolution. Journal of Global Optimization, 2003, 27(1): 105-129 [29] Schmidt H, Thierauf G. A Combined Heuristic Optimization Technique. Advances in Engineering Software, 2005, 36(1): 11-19 [30] Blackwell T, Branke J. MultiSwarm Optimization in Dynamic Environments // Raidl G R, Cagnoni S, Branke J, et al, eds. Lecture Notes in Computer Science. Berlin, Germany: SpringerVerlag, 2004, 3005: 489-500 [31] Lin Y C, Wang Fengsheng, Hwang K S. A Hybrid Method of Evolutionary Algorithms for MixedInteger Nonlinear Optimization Problems // Proc of Congress on Evolutionary Computation. Washington, USA, 1999, Ⅲ: 2159-2166 [32] Ali M M. Differential Evolution with Preferential Crossover. European Journal of Operational Research, 2007, 181(3): 1137-1147 [33] Tasgetiren M F, Suganthan P N. A MultiPopulated Differential Evolution Algorithm for Solving Constrained Optimization Problem // Proc of the IEEE Congress on Evolutionary Computation. Vancouver, USA, 2006: 33-40 [34] Parsopoulos K E, Tasoulis D K, Pavlidis N G, et al. Vector Evaluated Differential Evolution for MultiObjective Optimization // Proc of the IEEE Congress on Evolutionary Computation. Portland, USA, 2004, Ⅰ: 204- 211 [35] Wang Yongjun, Zhang Jiangshe, Zhang Gaiying. A Dynamic Clustering Based Differential Evolution Algorithm for Global Optimization. European Journal of Operational Research, 2007, 183(1): 56-73 [36] Ahuja R K, Orlin J B. Developing Fitter Genetic Algorithms. Journal of Computing, 1997, 9(3): 251-253 [37] Kaelo P, Ali M M. A Numerical Study of Some Modified Differential Evolution Algorithms. European Journal of Operational Research, 2006, 169(3): 1176-1184 [38] Yan Jingyu, Ling Qing, Sun Demin. A Differential Evolution with Simulated Annealing Updating Method // Proc of the International Conference on Machine Learning and Cybernetics. Dalian, China, 2006: 2103-2106 [39] Chakraborty U K, Das S, Konar A. Differential Evolution with Local Neighborhood // Proc of the IEEE Congress on Evolutionary Computation. Vancouver, USA, 2006: 2042-2049 [40] Chiou J P, Chang C F, Su C T. Ant Direction Hybrid Differential Evolution for Solving Large Capacitor Placement Problems. IEEE Trans on Power System, 2004, 19(4): 1794-1800 [41] Bergey P K, Ragsdale C. Modified Differential Evolution: A Greedy Random Strategy for Genetic Recombination. Omega—International Journal of Management Science, 2005, 33(3): 255-265