模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (4): 610-616    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
粒子群与多种群元胞遗传混合优化算法
黎明,揭丽琳,鲁宇明
南昌航空大学信息工程学院南昌330063
A Hybrid Particle Swarm and Multi-Population Cellular Genetic Algorithm
LI Ming, JIE Li-Lin, LU Yu-Ming
School of Information Engineering,Nanchang Hangkong University,Nanchang 330063

全文: PDF (431 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 元胞遗传算法通过限定个体之间的相互作用邻域提高算法的全局收敛率,但在一定程度降低搜索效率。文中提出一种粒子群与多种群元胞遗传混合优化算法。首先将群体分割成多个相互之间没有邻域关系的元胞子种群,适度降低算法的选择压力,从而更好地保持种群的多样性。算法的变异操作被粒子群算法替代,使得局部搜索能力明显提高。元胞群体分割和粒子群变异较好地均衡全局探索和局部寻优之间的关系。分析混合算法的选择压力和多样性变化规律。实验结果表明,该算法在保证搜索效率较高的同时还显著提高元胞遗传算法的全局收敛率且稳定性得到明显改善。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎明
揭丽琳
鲁宇明
关键词 元胞遗传算法粒子群算法种群分割选择压力多样性    
Abstract:Cellular genetic algorithm (CGA) enhances global convergence rate via constraining individual interaction in its neighbor. However, it results in of low search efficiency. An algorithm, called hybrid particle swarm and multi-population cellular genetic algorithm (HPCGA), is proposed. Firstly, the whole population is divided into some sub-populations,the individuals in different sub-populations do not interact each other. Nevertheless different sub-populations can communicate with each other via immigrant and share the evolutionary information. Division of the population appropriately reduces the selection pressure, and thus the individual diversity is maintained more effectively. The mutation of CGA is replaced by particle swarm optimization to improve the ability of local search. The above two improvements balance the trade-off between global exploration and local exploitation. Selection pressure and individual diversity of the proposed HPCGA are also studied. Optimization of six typical functions is carried out by using the proposed HPCGA and CGA. The experimental results show that the performance of the proposed HPCGA is obviously superior to that of CGA in global convergence rate, convergence speed and stability.
Key wordsCellular Genetic Algorithm    Particle Swarm Optimization    Population Segmentation    Selection Pressure    Individual Diversity   
收稿日期: 2011-07-25     
ZTFLH: TP391.41  
基金资助:国家自然科学基金(No.60963002)、江西省自然科学基金(No.2009GZS0090)资助项目
作者简介: 黎明,男,1965年生,教授,博士生导师,主要研究方向为智能计算、模式识别、图像处理。E-mailliming@nchu。edu。cn。揭丽琳,女,1987年生,硕士研究生,主要研究方向为智能计算。鲁宇明,女,1969年生,博士研究生,主要研究方向为智能计算。
引用本文:   
黎明,揭丽琳,鲁宇明. 粒子群与多种群元胞遗传混合优化算法[J]. 模式识别与人工智能, 2012, 25(4): 610-616. LI Ming, JIE Li-Lin, LU Yu-Ming. A Hybrid Particle Swarm and Multi-Population Cellular Genetic Algorithm. , 2012, 25(4): 610-616.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I4/610
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn