模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (7): 603-612    DOI: 10.16451/j.cnki.issn1003-6059.201507004
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于探索与利用平衡理论的灾变粒子群算法*
李坤1,黎明1,2,陈昊2
1.南京航空航天大学 自动化学院 南京 210016
2.南昌航空大学 信息工程学院 南昌 330063
Particle Swarm Optimization with Exhaustive Disturbance Based on Exploration-Exploitation Balance Theory
LI Kun1, LI Ming1,2, CHEN Hao2
1.College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2.School of Information Engineering, Nanchang Hangkong University, Nanchang 330063

全文: PDF (730 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 基于算法只有适应优化问题的特性才能表现出优异性能的观点,在探索与利用平衡的理论框架下将灾变机制引入粒子群算法.在对灾变的强度和范围进行深入研究的基础上,提出4种控制灾变的方法,并通过多组正交实验研究最佳的灾变触发方式.通过实验分析得出如下结论:灾变对高维问题的作用有限;灾变强度控制在15%以下为宜;以种群多样性作为灾变的触发条件,能得到较好效果.以上述结论为基础提出自适应灾变粒子群算法,并通过与其他算法对比验证文中算法具有较好性能.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李坤
黎明
陈昊
关键词 探索与利用平衡种群多样性正交实验适应值-距离关联系数    
Abstract:Based on the viewpoint that the algorithm gain a good performance only because it fits the characters of the optimization problem, exhaustive disturbance mechanism is introduced in the particle swarm algorithm under the theoretical framework of the exploration-exploitation balance. Based on the thorough researches of the intensity and range for exhaustive disturbance, four kinds of method for employing exhaustive disturbance are proposed in this paper. Some groups of orthogonal experiments are designed to find the best way of employing exhaustive disturbance. By analyzing the experimental results, the following conclusions are drawn. Exhaustive disturbance has its limits while dealing with high dimensional optimization problems, the intensity of exhaustive disturbance needs to be restricted within 15%, and the triggering condition of exhaustive disturbance based on population diversity shows better performance than the other triggering conditions. Finally, on the basis of the above conclusions, adaptive particle swarm optimization with exhaustive disturbance is proposed. Comparing with other algorithms, the proposed algorithm has a better performance.
Key wordsExploration-Exploitation Balance    Population Diversity    Orthogonal Experiment    Fitness-Distance Correlation Coefficient   
收稿日期: 2014-09-16     
ZTFLH: TP181  
基金资助:国家自然科学基金项目(No.61262019,61202112)资助
作者简介: 李坤,男,1983年生,博士研究生,主要研究方向为智能计算.E-mail:likuncba@126.com.黎明(通讯作者),男,1965年生,教授,博士生导师,主要研究方向为智能计算、图像处理、模式识别等.E-mail:limingniat@hotmail.com.陈昊,男,1982年生,博士,讲师,主要研究方向为智能计算.
引用本文:   
李坤,黎明,陈昊. 基于探索与利用平衡理论的灾变粒子群算法*[J]. 模式识别与人工智能, 2015, 28(7): 603-612. LI Kun, LI Ming, CHEN Hao. Particle Swarm Optimization with Exhaustive Disturbance Based on Exploration-Exploitation Balance Theory. , 2015, 28(7): 603-612.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201507004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I7/603
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn