模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (2): 122-130    DOI: 10.16451/j.cnki.issn1003-6059.201602004
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
加权网络的在线结构学习算法*
蒋晓娟,张文
中国科学院自动化研究所 复杂系统管理与控制国家重点实验室 北京 100190
Online Structure Learning Algorithm for Weighted Networks
JIANG Xiaojuan, ZHANG Wensheng
The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,Chinese Academy of Sciences, Beijing 100190

全文: PDF (582 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 随着互联网技术的进步,网络关系数据不断涌现,规模不断膨胀,网络数据的结构分析成为机器学习和网络应用领域的研究热点.为了提高推理效率,文中提出加权网络的在线结构学习算法.首先,使用指数族分布描述加权网络的生成过程.然后,利用随机变分推理方法,构建加权网络的在线结构学习算法.该算法采用基于重采样技术的增量学习方式,降低优化的时间复杂度.最后,利用基于自然梯度理论的随机优化方法进一步加速学习过程,实现网络社区结构的在线学习和实时优化.通过与传统的离线学习算法进行对比实验,验证文中算法能高效快速地实现复杂加权网络的社区结构学习,并在较短时间内达到较高的预测精度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:With continuous development of internet technology, the scope of network datasets increases massively. Analyzing the structure of network data is a research hotspot in machine learning and network applications. In this paper, a scalable online learning algorithm is proposed to speed up the inference procedure for the latent structure of weighted networks. Firstly, the exponential family distribution is utilized to represent the generative process of weighted networks. Then, using stochastic variational inference technique, the online-weighted stochastic block model (ON-WSBM) is developed to efficiently approximate the posterior distribution of underlying block structure. In ON-WSBM an incremental approach based on the subsampling method is adopted to reduce the time complexity of optimization, and then the stochastic optimization method is employed by using natural gradient to simplify the calculation and further accelerate the learning procedure. Extensive experiments on four popular datasets demonstrate that ON-WSBM can efficiently capture the community structure of the complex weighted networks, and can achieve comparatively high prediction accuracy in a short time.
收稿日期: 2015-04-28     
ZTFLH: TP181  
基金资助:国家自然科学基金重点项目(No.U1135005)资助
作者简介: 蒋晓娟,女,1983年生,博士研究生,主要研究方向为机器学习、人工智能.E-mail:xiaojuan.jiang@ia.ac.cn. 
(JIANG Xiaojuan, born in 1983, Ph.D. candidate. Her research interests include machine learning and artificial intelligence.)
张文生(通讯作者),男,1966年生,博士,研究员,主要研究方向为机器学习、人工智能、大数据挖掘.E-mail:wensheng.zhang@ia.ac.cn.
(ZHANG Wensheng(Corresponding author), born in 1966, Ph.D., professor. His research interests include machine learning, artificial intelligence and big data mining.)
引用本文:   
蒋晓娟,张文. 加权网络的在线结构学习算法*[J]. 模式识别与人工智能, 2016, 29(2): 122-130. JIANG Xiaojuan, ZHANG Wensheng. Online Structure Learning Algorithm for Weighted Networks. , 2016, 29(2): 122-130.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201602004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I2/122
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn