模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (2): 131-142    DOI: 10.16451/j.cnki.issn1003-6059.201602005
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
融合多特征的加权分布跟踪*
罗会兰1,单顺勇1,孔繁胜2
1.江西理工大学 信息工程学院 赣州 341000
2.浙江大学 计算机科学与技术学院 杭州 310027
Object Tracking Model Based on Fusing Multiple Weighted Distribution Field Features
LUO Huilan1, SHAN Shunyong1, KONG Fansheng2
1.School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
2.College of Computer Science and Technology, Zhejiang University, Hangzhou 310027

全文: PDF (1315 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 单一特征很难做到长时间的有效跟踪,使用直方图描述特征简单方便,但丢失特征的空间结构信息,而分布域描述算子可体现特征的空间信息.基于各自特点,文中提出融合灰度值特征、纹理特征和边缘特征的目标跟踪算法.通过分布域描述子联合表示3种特征,并且对分布域特征密集的分布层乘以相应权值,构建一种高效的目标模型.采用自适应目标模型更新方式更新目标模型,适应背景和光照等的变化.在常用视频序列中的对比实验表明,文中算法可应对目标的形变、旋转、光照变化及遮挡等各种复杂情况,跟踪效果具有鲁棒性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗会兰
单顺勇
孔繁胜
关键词 跟踪分布域描述子多特征融合模型匹配    
Abstract:Object tracking is difficult to be implemented by using single feature. Histogram is simple and convenient to describe the image features. However, the spatial information of the features can not be expressed by the statistical histograms, and the distribution field descriptors can reflect the spatial information of the features. Based on their advantages, an object tracking algorithm is proposed by fusing gray value features, texture features and edge features. Three kinds of features are combined through distribution field descriptors to form joint representations. And the distribution layers of dense distribution field features are multiplied by the corresponding weights to construct an efficient target model. An adaptive object model updating scheme is used to update the target model and adapt to varietiesof the background and the illumination. The experimental results on commonly used testing video sequences show that the proposed algorithm generates better performance in complicated situations, such as pose change, rotation, occlusion and illumination changes and it has stronger robustness.
Key wordsTracking    Distribution Field Descriptor    Multiple Features Fusion    Model Matching   
收稿日期: 2015-02-09     
ZTFLH: TP391.4  
基金资助:国家自然科学基金项目(No.61462035,61105042)、江西省青年科学家培养对象项目(No.20153BCB23010)资助
作者简介: 罗会兰(通讯作者),女,1974年生,博士,教授,主要研究方向为器学习、模式识别.E-mail:luohuilan@sina.com.
(LUO Huilan (Corresponding author), born in 1974, Ph.D., professor. Her research interests include machine learning and pattern recognition.)
单顺勇,男,1990年生,硕士研究生,主要研究方向为目标跟踪.E-mail:ssy3773900@126.com.
(SHAN Shunyong, born in 1990, master student. His research interests include object tracking.)
孔繁胜,男,1946年生,硕士,教授,主要研究方向为人工智能、知识发现.E-mail:kfs@zju.edu.cn.
(KONG Fansheng, born in 1946, master, professor. His research interests include artificial intelligence and knowledge discovery.)
引用本文:   
罗会兰,单顺勇,孔繁胜. 融合多特征的加权分布跟踪*[J]. 模式识别与人工智能, 2016, 29(2): 131-142. LUO Huilan, SHAN Shunyong, KONG Fansheng. Object Tracking Model Based on Fusing Multiple Weighted Distribution Field Features. , 2016, 29(2): 131-142.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201602005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I2/131
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn