Abstract:The existing spatio-temporal context based target tracking algorithms have good performance for static occlusion due to the consideration of the spatio-temporal relationship between the object and the background. However, the large occlusion area of the object or the occluded fast-moving object still easily lead to inaccurate tracking or lost tracking. A target tracking algorithm combining target occlusion detection and context information is proposed in this paper. Firstly, the compressed illumination-invariant color features extracted from the first frame are utilized to constitute and initialize spatio-temporal context model. Then, the occlusions in the inputted video frames are judged by bidirectional trajectory error. If the bidirectional matching error of key points in object region between consecutive frames is less than a set threshold, there is no dynamic occlusion or severe static occlusion. Accordingly, the accurate tracking is conducted in virtue of spatio-temporal context model. Otherwise, the objects in the subsequent frames are detected by the combined classifiers until the objects can be detected again. Meanwhile, the context model and classifiers are updated online. The experimental results on several video frame sequences show that the proposed method can deal with severe static occlusion and dynamic occlusion in complex scenario well.
[1] 齐美彬,陆 磊,杨 勋,等.基于自适应压缩特征选择的实时目标跟踪算法.模式识别与人工智能, 2015, 28(4): 361-368. (QI M B, LU L, YANG X, et al. Real-Time Object Tracking Algorithm Based on Adaptive Compressive Feature Selection. Pattern Recognition and Artificial Intelligence, 2015, 28(4): 361-368.) [2] 陈晨树,张 骏,谢 昭,等.适应性结构保持约束下的目标跟踪方法.模式识别与人工智能, 2015, 28(2): 105-115. (CHEN C S, ZHANG J, XIE Z, et al. Object Tracking under Constraint of Adaptive Structure-Preserving. Pattern Recognition and Artificial Intelligence, 2015, 28(2): 105-115.) [3] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive Color Attributes for Real-Time Visual Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1090-1097. [4] PROKAJ J, MEDIONI G. Persistent Tracking for Wide Area Aerial Surveillance // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1186-1193. [5] WANG D, LU H C, YANG M H. Online Object Tracking with Sparse Prototypes. IEEE Transactions on Image Processing, 2013, 22(1): 314-325. [6] ZHANG T Z, GHANEM B, LIU S, et al. Robust Visual Tracking via Multi-task Sparse Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 2042-2049. [7] BABENKO B, YANG M H, BELONGIE S. Visual Tracking with Online Multiple Instance Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 983-990. [8] YANG H, ALAHARI K, SCHMID C. Online Object Tracking with Proposal Selection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 3092-3100. [9] YANG H, ALAHARI K, SCHMID C. Occlusion and Motion Reasoning for Long-Term Tracking // Proc of the 13th European Confe-rence on Computer Vision. New York, USA: Springer, 2014, VI: 172-187. [10] KWON J, ROH J, LEE K M, et al. Robust Visual Tracking with Double Bounding Box Model // Proc of the 13th European Confe-rence on Computer Vision. New York, USA: Springer, 2014, I: 377-392. [11] YANG M, WU Y, HUA G. Context-Aware Visual Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7): 1195-1209. [12] WEN L Y, CAI Z W, LEI Z, et al. Online Spatio-Temporal Structural Context Learning for Visual Tracking // Proc of the 12th European Conference on Computer Vision. New York, USA: Springer, 2012, IV: 716-729. [13] ZHANG K H, ZHANG L, LIU Q S, et al. Fast Visual Tracking via Dense Spatio-Temporal Context Learning // Proc of the 13th European Conference on Computer Vision. New York, USA: Springer, 2014, V: 127-141. [14] KALAL Z, MIKOLAJCZYK K, MATAS J. Face-TLD: Tracking-Learning-Detection Applied to Faces // Proc of the 17th IEEE International Conference on Image Processing. Washington, USA: IEEE, 2010: 3789-3792. [15] WU B, NEVATIA R. Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet Based Part Detectors. International Journal of Computer Vision, 2007, 75(2): 247-266. [16] KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-Backward Error: Automatic Detection of Tracking Failures // Proc of the 20th International Conference on Pattern Recognition. Washington, USA: IEEE, 2010: 2756-2759. [17] ZHANG K H, ZHANG L, YANG M H. Real-Time Compressive Tracking // Proc of the 12th European Conference on Computer Vision. New York, USA: Springer, 2012, III: 864-877. [18] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2012, 34(7): 1409-1422. [19] WANG Q, CHEN F, XU W L, et al. Object Tracking via Partial Least Squares Analysis. IEEE Transactions on Image Processing, 2012, 21(10): 4454-4465.