Abstract:With structure preserving property in tracking, a representation method for object structural appearance is proposed. In the proposed method, regional nodes are built to describe the local property of the object. And several soft/hard constraints are defined on regional nodes so that local and global properties of the object and the spatial structure of regional nodes are unified and described by the object structural representation. During the tracking procedure, state of objects can be roughly estimated by matching scale-invariant feature transform (SIFT) flow of local regions between successive frames. Then, through soft/hard constraints on regional nodes, the tracking result can be adaptively adjusted, which is called adaptive structure-preserving (ASP). Experimental results show that ASP performs better than other methods in tracking objects with deformation, shadows and illumination changes. Furthermore, ASP shows robustness and good generalization ability when the resolution of video sequences is low and the object is similar to the background.
[1] Yang H X, Shao L, Zheng F, et al. Recent Advances and Trends in Visual Tracking: A Review. Neurocomputing, 2011, 74(18): 3823-3831 [2] Hou Z Q, Han C Z. A Survey of Visual Tracking. Acta Automatica Sinica, 2006, 32(4): 603-617 (in Chinese) (侯志强,韩崇昭.视觉跟踪技术综述.自动化学报, 2006, 32(4): 603-617) [3] Yilmaz A, Javed O, Shah M. Object Tracking: A Survey [EB/OL]. [2014-01-08]. http:// crcv.ucf.edu/papers/Object %20 Tracking.pdf [4] Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Par-ticle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans on Signal Processing, 2002, 50(2): 174-188 [5] Yang D W, Cong Y, Tang Y D. Object Tracking Method Based on Particle Filter and Sparse Representation. Pattern Recognition and Artificial Intelligence, 2013, 26(7): 680-687 (in Chinese)
(杨大为,丛 杨,唐延东.基于粒子滤波与稀疏表达的目标跟踪方法.模式识别与人工智能, 2013, 26(7): 680-687) [6] Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-rigid Objects Using Mean Shift // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, II: 142-149 [7] Ma L, Chang F L, Qiao Y Z. Target Tracking Based on Mean Shift Algorithm and Particle Filtering Algorithm. Pattern Recognition and Artificial Intelligence, 2006, 19(6): 787-793 (in Chinese) (马 丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪.模式识别与人工智能, 2006, 19(6): 787-793) [8] Nguyen H T, Smeulders A W M. Robust Tracking Using Foreground-Background Texture Discrimination. International Journal of Computer Vision, 2006, 69(3): 277-293 [9] Grabner H, Grabner M, Bischof H. Real-Time Tracking via On-line Boosting[EB/OL]. [2014-02-28]. http://www.vision.ee.ethz.ch/~hegrabne/papers/Grabner2006Real-TimeTrackingvia.pdf [10] Avidan S. Ensemble Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271 [11] Sevilla-Lara L, Learned-Miller E. Distribution Fields for Tracking // Proc.of the IEEE Conference on Computer Vision and Pattern Reeognition. Providence, USA, 2012: 1910-1917 [12] Adam A, Rivlin E, Shimshoni I. Robust Fragments-Based Tracking Using the Integral Histogram // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, I: 798-805 [13] Mei X, Ling H B. Robust Visual Tracking Using l1 Minimization // Proc of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan, 2009: 1436-1443 [14] Zhang S P, Yao H X, Sun X, et al. Sparse Coding Based Visual Tracking: Review and Experimental Comparison. Pattern Recognition, 2013, 46(7): 1772-1788 [15] Ross D A, Lim J, Lin R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141 [16] Ng A Y, Jordan M I. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Nave Bayes [EB/OL]. [2014-02-28]. http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf [17] Logothetis N K, Sheinberg D L. Visual Object Recognition. An-nual Review of Neuroscience, 1996, 19: 577-621 [18] Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645 [19] Quattoni A, Collins M, Darrell T. Conditional Random Fields for Object Recognition [EB/OL]. [2014-01-08]. http: // papers.nips.cc/paper/2652-conditional-random-fields-for-object-recognition.pdf [20] Liu C, Yuen J, Torralba A. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978-994 [21] Murphy K P, Weiss Y, Jordan M I. Loopy Belief Propagation for Approximate Inference: An Empirical Study // Proc of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999: 467-475 [22] Zhang K H, Zhang L, Yang M H. Real-Time Compressive Trac-king // Proc of the 12th European Conference on Computer Vision. Florence, Italy, 2012,Ⅲ: 864-877 [23] Oron S, Bar-Hillel A, Levi D, et al. Locally Orderless Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1940-1947 [24] Wu Y, Lim J, Yang M H. Online Object Tracking: A Benchmark // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 2411-2418 [25] Everingham M, Van Gool L, Williams C K I, et al. The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 2010, 88(2): 303-338 [26] Babenko B, Yang M H, Belongie S. Robust Object Tracking with Online Multiple Instance Learning. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632