Abstract:To address problems of appearance change and partial occlusion in target tracking, a tracking algorithm is presented via combing hierarchical extreme learning machine(HELM) and adaptive structural local sparse appearance model(ASLSAM). HELM is capable of extracting robust features and fast classification. ASLSAM can improve the tracking accuracy and handle the partial occlusion. Finally, results of both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the tracking process of the proposed algorithm is stable with high tacking precision.
[1] MA B, SHEN J B, LIU Y B, et al. Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors. IEEE Transactions on Multimedia, 2015, 17(10): 1818-1828. [2] 周 鑫,钱秋朦,叶永强,等.改进后的TLD视频目标跟踪方法.中国图象图形学报, 2013, 18(9): 1115-1123. (ZHOU X, QIAN Q M, YE Y Q, et al. Improved TLD Visual Target Tracking Algorithm. Journal of Image and Graphics, 2013, 18(9): 1115-1123.) [3] BABENKO B, YANG M H, BELONGIE S.Visual Tracking with Online Multiple Instance Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 983-990. [4] ADAM A, RIVLIN E, SHIMSHONI I. Robust Fragments-Based Tracking Using the Integral Histogram // Proc of the IEEE Compu-ter Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2006, I: 798-805. [5] KALAL Z, MATAS J, MIKOLAJCZYK K. P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 49-56. [6] GRABNE R H, BISCHOF H. On-line Boosting and Vision // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2006: 260-267. [7] WANG S, LU H C, YANG F, et al. Superpixel Tracking // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2011: 1323-1330. [8] ZHANG K H, ZHANG L, YANG M H. Fast Compressive Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. [9] AVIDAN S. Ensemble Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271. [10] MATTHEWS I, ISHIKAWA T, BAKER S. The Template Update Problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815. [11] ROSS D A, LIM J, LIN R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1): 125-141. [12] KWON J, LEE K M. Visual Tracking Decomposition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 1269-1276. [13] 齐苑辰,吴成东,陈东岳,等.基于稀疏表达的超像素跟踪算法.电子与信息学报, 2015, 3(11): 529-535. (QI Y C, WU C D, CHEN D Y, et al. Superpixel Tracking Based on Sparse Representation. Journal of Electronics and Information Technology, 2015, 37(3): 529-535.) [14] 查 绎,曹铁勇,黄 辉,等.软判决稀疏字典的目标跟踪算法.计算机辅助设计与图形学学报, 2014, 26(8): 1279-1289. (ZHA Y, CAO T Y, HUANG H, et al. Object Tracking with Soft Discriminative Sparse Dictionary. Journal of Computer-Aided Design and Computer Graphics, 2014, 26(8): 1279-1289.) [15] MEI X, LING H B. Robust Visual Tracking and Vehicle Classification via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272. [16] LIU B Y, HUANG J Z, YANG L, et al. Robust Tracking Using Local Sparse Appearance Model and k-Selection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 1313-1320. [17] JIA X, LU H C, YANG M H. Visual Tracking via Adaptive Structural Local Sparse Appearance Model // Proc of the IEEE Compu- ter Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 1822-1829. [18] TANG J X, DENG C W, HUANG G B. Extreme Learning Machine for Multilayer Perceptron. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(4): 809-821. [19] IOSIFIDIS A, TEFAS A, PITAS I. Large-Scale Nonlinear Facial Image Classification Based on Approximate Kernel Extreme Lear- ning Machine // Proc of the IEEE International Conference on Image Processing. Washington, USA: IEEE, 2015: 2449-2453. [20] 吴 军,王士同,赵 鑫.正负模糊规则系统、极限学习机与图像分类.中国图象图形学报, 2011, 8(3): 1408-1417. (WU J, WANG S T, ZHAO X. Positive and Negative Fuzzy Rule System, Extreme Learning Machine and Image Classification. Journal of Image and Graphics, 2011, 8(3): 1408-1417.) [21] 徐嘉明,张卫强,杨登舟,等.基于流形正则化极限学习机的语种识别系统.自动化学报, 2015, 41(9): 1680-1685. (XU J M, ZHANG W Q, YANG D Z, et al. Manifold Regularized Extreme Learning Machine for Language Recognition. Acta Automatica Sinica, 2015, 41(9): 1680-1685.) [22] KASUN L L C, ZHOU H, HUANG G B, et al. Representational Learning with Extreme Learning Machine for Big Data. IEEE Inte- lligent Systems, 2013, 28(6): 31-34. [23] VANLI N D, SAYIN M O, DELIBALTA I, et al. Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 546-558. [24] HUANG G B, ZHOU H M, DING X J, et al. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Tran- sactions on Systems, Man, and Cybernetics(Cybernetics), 2012, 42(2): 513-529. [25] HUANG G B, CHEN L, SIEW C K. Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892. [26] HUANG G, SONG S J, GUPTA J N D, et al. Semi-supervised and Unsupervised Extreme Learning Machines. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417. [27] LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423. [28] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[29] BECK A, TEBOULLE M. A Fast Iterative Shrinkage-Thresholding Algorithm with Application to Wavelet-Based Image Deblurring // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, USA: IEEE, 2009: 183-202.