模式识别与人工智能
2025年7月31日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (4): 604-609    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于Fisher准则与SVM的分层语音情感识别
陈立江1,毛峡1,MitsuruISHIZUKA2
1。北京航空航天大学电子信息工程学院北京100191
2。DepartmentofInformationandCommunicationEngineering,UniversityofTokyo,Japan
Multi-Level Speech Emotion Recognition Based on Fisher Criterion and SVM
CHEN Li-Jiang1, MAO Xia1, Mitsuru ISHIZUKA2
1.School of Electronic and Information Engineering,Beihang University,Beijing 100191
2.Department of Information and Communication Engineering,University of Tokyo,Japan

全文: PDF (456 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对说话人无关的语音情感识别,提出一个分层语音情感识别模型,由粗到细识别悲伤、愤怒、惊奇、恐惧、喜悦和厌恶6种情感。每层采用Fisher比率从288个备选特征中选择适合该层分类的特征,同时将Fisher比率作为输入参数训练该层的支持向量机分类器。基于北京航空航天大学情感语音数据库和德国柏林情感语音数据库,设计4组对比实验,实验结果表明,Fisher准则在两两分类特征选择上优于PCA,SVM在说话人无关的语音情感识别推广方面优于人工神经网络(ANN)。在两个数据库的基础上得到类似结果,说明文中分类模型具有一定的跨文化适应性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈立江
毛峡
MitsuruISHIZUKA
关键词 语音情感识别说话人无关Fisher准则支持向量机    
Abstract:To solve the speaker independent emotion recognition problem, a multi-level speech emotion recognition system is proposed to classify 6 speech emotions, including sadness, anger, surprise, fear, happiness and disgust from coarse to fine. The key is that the emotions divided by each layer are closely related to the emotional features of speech. For each level, appropriate features are selected from 288 candidate features by Fisher ratio which is also regarded as input parameter for the training of support vector machine (SVM). Based on Beihang emotional speech database and Berlin emotional speech database, principal component analysis (PCA) for dimension reduction and Artificial Neural Network (ANN) for classification are adopted to design 4 comparative experiments, including Fisher+SVM, PCA+SVM, Fisher+ANN, PCA+ANN. The experimental results prove that Fisher rule is better than PCA for dimension reduction, and SVM is more expansible than ANN for speaker independent speech emotion recognition. Good cross-cultural adaptation can be inferred from the similar results of experiments based on two different databases.
Key wordsSpeech Emotion Recognition    Speaker Independent    Fisher Criterion    Support Vector Machine   
收稿日期: 2011-03-21     
ZTFLH: TP391.42  
基金资助:国家自然科学基金项目(No.61103097,60873269)、中日国际科技合作项目(No.2010DFA11990)资助
作者简介: 陈立江,男,1984年生,博士研究生,主要研究方向为语音信号处理、情感识别等。E-mail:clj@ee。buaa。edu。cn。毛峡,女,1952年生,教授,博士生导师。主要研究方向为情感计算、模式识别、人机交互等。MitsuruISHIZUKA,男,1949年生,教授,博士生导师,主要研究方向为人机交互、情感计算、仿生代理等。
引用本文:   
陈立江,毛峡,MitsuruISHIZUKA. 基于Fisher准则与SVM的分层语音情感识别[J]. 模式识别与人工智能, 2012, 25(4): 604-609. CHEN Li-Jiang, MAO Xia, Mitsuru ISHIZUKA. Multi-Level Speech Emotion Recognition Based on Fisher Criterion and SVM. , 2012, 25(4): 604-609.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I4/604
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn