模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (4): 335-343    DOI: 10.16451/j.cnki.issn1003-6059.201504006
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于贡献模型的多机器人多目标观测方法*
杨建华1,2,曾文佳2,吴朝晖1,2
1.浙江大学 科学技术研究院 杭州 310027
2.浙江大学 计算机科学与技术学院 杭州 310027
Cooperative Multi-robot Observation of Multiple Moving Targets Based on Contribution Model
YANG Jian-Hua1,2, ZENG Wen-Jia2, WU Zhao-Hui1,2
1.The Sci-Tech Academy, Zhejiang University, Hangzhou 310027
2.College of Computer Science and Technology, Zhejiang University, Hangzhou 310027

全文: PDF (599 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 如何在减少重叠观测现象的同时提高平均观测率是多机器人多目标观测的一个难题.文中提出基于贡献模型的多机器人多目标观测方法(C-CMOMMT),将机器人所观测的目标数记为贡献值,增加贡献值低的机器人所受的排斥力,扩大排斥力的作用距离,减小权重小的目标对贡献值高的机器人的吸引力,从而减少重叠观测现象.同时降低贡献值高的机器人所受到的排斥力,减轻排斥力的副作用,减少目标丢失现象,因此提高整体的平均观测率.为更系统地评价观测性能,建立由平均观测率、位置标准差和位置熵这3个因素构成的综合评价体系.仿真实验表明,相比A-CMOMMT和B-CMOMMT,C-CMOMMT可提高平均观测率,减少重叠观测现象,体现出较好的可行性和高效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:How to reduce the overlap observation phenomena and improve the average observation rate at the same time is a complicated problem of cooperative multi-robot observation of multiple moving targets. An approach based on contribution for cooperative multi-robot observation of multiple moving targets (C-CMOMMT) is proposed. Each robot is endowed by the C-CMOMMT algorithm with a contribution value derived from the number of assigned targets to it. Robots with low contribution receive strengthened repulsive forces from all others. Besides, the operating distances of all repulsive forces are expanded, and robots with high contribution receive weakened attractive forces from low-weighted targets. With these three methods the overlap observation phenomena are reduced. To decrease the target loss, robots with high contribution receive feeble repulsive forces, and thus the side effects become weak. Consequently, the robots are decentralized and the overlap observing phenomena are dwindled. The average observation rate, the standard deviation and entropy of the positions of mobile robots are introduced to systematically evaluate the performance and the degree of overlap observing. Results show that C-CMOMMT improves the average observation rate and dwindles the overlap observing phenomena and it is more effective than A-CMOMMT and B-CMOMMT.
收稿日期: 2013-06-26     
ZTFLH: TP242  
基金资助:国家自然科学基金项目(No.61173177)、基础科研项目(No.B1420110149)资助
作者简介: 杨建华(通讯作者),男,1973年生,教授,博士生导师,主要研究方向为机器人系统、人工智能.E-mail:jhyang@zju.edu.cn.曾文佳,男,1988年生,硕士研究生,主要研究方向为机器人、人工智能.吴朝晖,男,1966年生,教授,博士生导师,主要研究方向为智能技术、软件平台技术.
引用本文:   
杨建华,曾文佳,吴朝晖. 基于贡献模型的多机器人多目标观测方法*[J]. 模式识别与人工智能, 2015, 28(4): 335-343. YANG Jian-Hua, ZENG Wen-Jia, WU Zhao-Hui. Cooperative Multi-robot Observation of Multiple Moving Targets Based on Contribution Model. , 2015, 28(4): 335-343.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201504006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I4/335
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn