模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (2): 154-162    DOI: 10.16451/j.cnki.issn1003-6059.201602007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于关键帧的复杂人体行为识别*
夏利民,时晓亭
中南大学 信息科学与工程学院 长沙 410075
Recognition of Complex Human Behavior Based on Key Frames
XIA Limin, SHI Xiaoting
School of Information Science and Engineering, Central South University, Changsha 410075

全文: PDF (1594 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出基于关键帧的复杂人体行为识别算法.采用人体轮廓表示人体动作,根据轮廓特征向量采用镜头边界检测将复杂行为片段分解后得到一系列简单行为,分解过程中采用二次采样提高分界点的查全率,采用自分裂竞争学习提取简单行为片段的关键帧.最后根据行为片段中关键帧的相似度进行复杂人体行为的识别,识别过程中综合考虑视觉因子、顺序因子及干扰因子,使行为识别的计算更合理全面.在UCF Sports数据库及自建数据库上的实验表明文中算法具有较高的识别精度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏利民
时晓亭
关键词 人体行为识别特征向量提取复杂行为分解关键帧提取    
Abstract:A key frames based method is proposed for recognition of complex human behavior. The body contours are adopted to represent actions. The complex behavior fragment is divided into simple behaviors by the shot boundary detection algorithm. To improve the recall rate, double sampling is employed during the segmentation. The self-splitting competitive learning algorithm is utilized to acquire key frames of simple behaviors. Finally, the recognition of complex human behavior is achieved according to the similarity of the key frames. During the process, the visual factor, the order factor and the interference factor are taken into account. Thus, the calculations of the recognition are more rational and comprehensive. The proposed method is verified on UCF Sports database and self-built database and the results indicate the high recognition accuracy of the proposed method.
Key wordsHuman Behavior Recognition    Feature Vector Extraction    Decomposition of Complex Behavior    Key Frame Extraction   
收稿日期: 2014-11-04     
ZTFLH: TP391.41  
基金资助:国家自然科学基金项目(No.50808025)、湖南省科技计划项目(No.2013GK3012)资助
作者简介: 夏利民(通讯作者),男,1963年生,博士,教授,主要研究方向为图像处理、模式识别.E-mail:limin.xia@ia.ac.cn.
(XIA Limin(Corresponding author), born in 1963, Ph.D., professor. His research interests include image processing and pattern recognition.)
时晓亭,女,1989年生,硕士,主要研究方向为图像处理、模式识别. E-mail:1046907358@qq.com.
(SHI Xiaoting, born in 1989, master. Her research interests include image processing and pattern recognition.)

   第一作者兼通讯作者:夏利民;联系电话:13974961656;电子邮箱:limin.xia@ia.ac.cn;联系地址:湖南省长沙市中南大学铁道学院电子楼318.
引用本文:   
夏利民,时晓亭. 基于关键帧的复杂人体行为识别*[J]. 模式识别与人工智能, 2016, 29(2): 154-162. XIA Limin, SHI Xiaoting. Recognition of Complex Human Behavior Based on Key Frames. , 2016, 29(2): 154-162.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201602007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I2/154
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn