模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (6): 527-533    DOI: 10.16451/j.cnki.issn1003-6059.201606006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
通信辐射源个体识别中基于l2正则化的最大相关熵算法*
唐哲,雷迎科
解放军电子工程学院 合肥 230037,通信信息控制和安全技术重点实验室 嘉兴 314033
Algorithm of Maximum Correntropy Based on l2-Regularization in Individual Communication Transmitter Identification
TANG Zhe, LEI Yingke
Electronic Engineering Institute of PLA, Hefei 230037
Science and Technology on Communication Information Security Control Laboratory, Jiaxing 314033

全文: PDF (480 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了衡量通信辐射源细微特征间的相似性,提出基于l2正则化的最大相关熵通信辐射源个体识别算法.首先提取通信辐射源信号矩形积分双谱特征表征辐射源个体差异,并构造基于l2正则化的最大相关熵准则的优化模型.然后利用半二次优化方法,将非线性的优化问题转化为加权线性最小二乘问题.最后利用有效集算法得到稀疏系数,并利用系数的判别信息构造分类器,实现通信辐射源的个体识别.在实际采集的同厂家同型号的FM电台数据集上验证文中算法的可行性与有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐哲
雷迎科
关键词 通信辐射源个体识别相关熵稀疏表示半二次优化l2正则化    
Abstract:To measure the similarity between the fine features of communication transmitters, an algorithm of individual communication transmitter identification using maximum correntropy based on l2-regularization is put forward. Firstly, the square integral bispectra of the communication transmitter signal is extracted to characterize the individual differences of communication transmitters, and then optimization model using maximum correntropy criterion based on l2-regularization is constructed. Next, the half-quadratic technique is used to transform the nonlinear optimization problem into a weighted linear least squares problem. Finally, the sparse coefficient can be computed by active set algorithm, and then the classifier is constructed by mining the discriminative information of coefficient for the communication transmitters identification. The feasibility and the effectiveness of the proposed algorithm are verified on the real datasets collected from the FM radios with same manufacturer and model.
Key wordsIndividual Communication Transmitter Identification    Correntropy    Sparse Representation    Half-Quadratic Optimization    l2-Regularization   
收稿日期: 2015-12-14     
基金资助:国家自然科学基金项目(No.61473237,61272333)、国防科技重点实验室基金项目(No.9140C130502140C13068)资助
引用本文:   
唐哲,雷迎科. 通信辐射源个体识别中基于l2正则化的最大相关熵算法*[J]. 模式识别与人工智能, 2016, 29(6): 527-533. TANG Zhe, LEI Yingke. Algorithm of Maximum Correntropy Based on l2-Regularization in Individual Communication Transmitter Identification. , 2016, 29(6): 527-533.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201606006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I6/527
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn