模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (7): 633-640    DOI: 10.16451/j.cnki.issn1003-6059.201507007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
非最小平方误差局部-全局加权融合的稀疏表示遮挡人脸识别*
胡正平,彭燕,赵淑欢
燕山大学 信息科学与工程学院 秦皇岛 066004
Sparse Representation with Weighted Fusion of Local Based Non-minimum Square Error and Global for Face Recognition under Occlusion Condition
HU Zheng-Ping, PENG Yan, ZHAO Shu-Huan
(School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004

全文: PDF (853 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 考虑到图像遮挡后部分局部信息属性改变,在利用最小残差判决函数分类时,各类残差可能因较接近而导致分类错误.针对此问题,从分类器判决函数出发,提出基于稀疏系数累积的局部-全局加权融合的稀疏表示遮挡人脸识别算法.该算法主要利用各类稀疏表示系数累积作为判决函数,使用Borda投票机制进行分类.利用系数累积进行全局分类,然后对局部各块分类,考虑到子块作用不同,利用稀疏度和残差两个参数表示其可信度权重,最后将全局和局部融合Borda投票,统计各类投票总数,实现分类.在公用数据库进行实验,结果表明该算法具有较好的有效性和鲁棒性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡正平
彭燕
赵淑欢
关键词 稀疏表示人脸识别可信度权重稀疏系数累积投票加权    
Abstract:In the occlusion face recognition, some covered parts change the property of local information. It may lead to a wrong classification using the minimum residual as a decision function for sparse representation classification when the residual is approximate. In this case, proceeding from the decision rule of the classifier, the algorithm of sparse representation with weighted fusion of local based non-minimum square error and global is proposed for face recognition. The accumulation of each class of coefficient is mainly used as the decision function and the Borda votes system is introduced for sparse representation classification. Firstly, the sparse coefficient accumulation of each class is calculated for global classification. Then, for the local information, the subblocks coefficient accumulation is used to classify. Considering the different effects of subblocks, the sparsity and residual are utilized to jointly express the weight of credibility. Finally, the global and local blocks are combined to Borda vote for the final classification. The experimental results on public available database demonstrate that the proposed algorithm has good effectiveness and robustness.
Key wordsSparse Representation    Face Recognition    Credibility Weight    Sparse Coefficient
Accumulation
   Voted Weighting   
收稿日期: 2014-04-09     
ZTFLH: TP391.4  
基金资助:国家自然科学基金项目(No.61071199)、河北省自然科学基金项目(No.F2010001297)资助
作者简介: 胡正平(通讯作者),男,1970年生,教授,博士生导师,主要研究方向为模式识别、图像处理.E-mail:hzp@ysu.edu.cn.彭燕,女,1988年生,硕士研究生,主要研究方向为稀疏表示分类.赵淑欢,女,1987年生,博士研究生,主要研究方向为稀疏表示分类.
引用本文:   
胡正平,彭燕,赵淑欢. 非最小平方误差局部-全局加权融合的稀疏表示遮挡人脸识别*[J]. 模式识别与人工智能, 2015, 28(7): 633-640. HU Zheng-Ping, PENG Yan, ZHAO Shu-Huan. Sparse Representation with Weighted Fusion of Local Based Non-minimum Square Error and Global for Face Recognition under Occlusion Condition. , 2015, 28(7): 633-640.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201507007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I7/633
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn