Center-Based Line Neighborhood Discriminant Embedding Algorithm and Its Application to Face Recognition
YANG Zhang-Jing1, HUANG Pu2, ZHANG Fan-Long1, YANG Guo-Wei1
1.School of Technology, Nanjing Audit University, Nanjing 211815 2.School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023
Abstract:To overcome the drawbacks of the existing marginal fisher analysis algorithm in feature extraction, a center-based line neighborhood discriminant embedding (CLNDE) algorithm is proposed for face recognition. Firstly, the distance from a sample point to the center-based line is utilized to construct the within-class similarity matrix and the between-class similarity matrix, respectively. Next, the between-class local scatter and the within-class local scatter of samples are calculated by the constructed similarity matrices. Finally, the optimal transformation matrix is found by maximizing the between-class local scatter and minimizing the within-class local scatter simultaneously. Experimental results on face databases demonstrate the superiority of the proposed algorithm.
杨章静,黄璞,张凡龙,杨国为. 中心线邻域鉴别嵌入算法及其在人脸识别中的应用*[J]. 模式识别与人工智能, 2015, 28(12): 1100-1109.
YANG Zhang-Jing , HUANG Pu , ZHANG Fan-Long , YANG Guo-Wei. Center-Based Line Neighborhood Discriminant Embedding Algorithm and Its Application to Face Recognition. , 2015, 28(12): 1100-1109.
[1] Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86 [2] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720 [3] Martinez A M, Kak A C. PCA versus LDA. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233 [4] Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323 [5] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326 [6] Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396 [7] He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340 [8] Zheng Z L, Huang X Q, Jia J, et al. Locality Preserving Projection with Sparse Penalty. Chinese Journal of Computers, 2014, 37(9): 2038-2046 (in Chinese) (郑忠龙,黄小巧,贾,等.稀疏局部保持投影.计算机学报, 2014, 37(9): 2038-2046) [9] Wan J W, Yang M, Ji G L, et al. Weighted Cost Sensitive Locality Preserving Projection for Face Recognition. Journal of Software, 2013, 24(5): 1155-1164 (in Chinese) (万建武,杨 明,吉根林,等.一种面向人脸识别的加权代价敏感局部保持投影.软件学报, 2013, 24(5): 1155-1164) [10] Yang J, Zhang D, Yang J Y, et al. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664 [11] Yan S C, Xu D, Zhang B Y, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51 [12] Sun Z J, Xue L, Xu Y M. Marginal Fisher Feature Extraction Algorithm Based on Deep Learning. Journal of Electronics & Information Technology, 2013, 35(4): 805-811(in Chinese) (孙志军,薛 磊,许阳明.基于深度学习的边际Fisher分析特征提取算法.电子与信息学报, 2013, 35(4): 805-811) [13] Huang P, Chen C K, Tang Z M, et al. Feature Extraction Using Local Structure Preserving Discriminant Analysis. Neurocompu-ting, 2014, 140: 104-113 [14] Wan M H, Li M, Yang G W, et al. Feature Extraction Using Two-Dimensional Maximum Embedding Difference. Information Sciences, 2014, 274: 55-69 [15] Lai Z H, Li Y J, Wan M H, et al. Local Sparse Representation Projections for Face Recognition. Neural Computation & Application, 2013, 23(7): 2231-2239 [16] Xu J, Yang J, Lai Z H. K-Local Hyperplane Distance Nearest Neighbor Classifier Oriented Local Discriminant Analysis. Information Sciences, 2013, 232: 11-26 [17] Huang P, Tang Z M, Chen C K, et al. Local Maximal Marginal Discriminant Embedding for Face Recognition. Journal of Visual Communication and Image Representation, 2014, 25(2): 296-305 [18] Huang P, Chen C K, Tang Z M, et al. Discriminant Similarity and Variance Preserving Projection for Feature Extraction. Neurocomputing, 2014, 139: 180-188 [19] Yang W K, Sun C Y, Zhang L. A Multi-manifold Discriminant Analysis Method for Image Feature Extraction. Pattern Recognition, 2011, 44(8): 1649-1657 [20] Gao Q B, Wang Z Z. Center-Based Nearest Neighbor Classifier. Pattern Recognition, 2007, 40(1): 346-349