模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2017, Vol. 30 Issue (2): 97-105    DOI: 10.16451/j.cnki.issn1003-6059.201702001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于复合卷积神经网络的图像去噪算法*
吕永标,赵建伟,曹飞龙
中国计量大学 理学院 应用数学系 杭州 310018
Image Denoising Algorithm
Based on Composite Convolutional Neural Network
Lü Yongbiao, ZHAO Jianwei, CAO Feilong
Department of Applied and Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018

全文: PDF (2206 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 基于深度学习理论,将图像去噪过程看成神经网络的拟合过程,构造简洁高效的复合卷积神经网络,提出基于复合卷积神经网络的图像去噪算法.算法第1阶段由2个2层的卷积网络构成,分别训练阶段2中的3层卷积网络中的部分初始卷积核,缩短阶段2中网络的训练时间和增强算法的鲁棒性.最后运用阶段2中的卷积网络对新的噪声图像进行有效去噪.实验表明文中算法在峰值信噪比、结构相识度及均方根误差指数上与当前较好的图像去噪算法相当,尤其当噪声加强时效果更佳且训练时间较短.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕永标
赵建伟
曹飞龙
关键词 图像去噪 卷积神经网络 随机梯度下降法
    
Abstract:According to the theory of deep learning, the process of image denoising can be regarded as a fitting process of a neural network. In this paper, an image denoising algorithm based on composite convolutional neural network is proposed through constructing a simple and efficient composite convolutional neural network. The first stage includes two convolutional neural networks with two layers. Some initial convolutional kernels of convolutional neural network with three layers in the second stage are trained by these two networks, respectively. The training time in the second stage is decreased and the robustness of the network is enhanced. Finally, the learned convolutional neural network in the second stage is applied to denoise a new image with noises. Experimental results show that the proposed algorithm is comparable to state of the art image denoising algorithms in peak signal to noise ratio(PNSR), structure similarity, and root mean square error(RMSE). Especially, when the noises get heavier, the proposed algorithm performs better with less training time.
Key wordsImage Denoising    Convolutional Neural Network    Stochastic Gradient Descent Method   
收稿日期: 2016-08-30     
ZTFLH: TN 911.71  
  TP 183  
基金资助:国家自然科学基金项目(No.61672477,61571410)资助
作者简介: 吕永标,男,1992年生,硕士研究生,主要研究方向为机器学习、图像处理等.E-mail:mtllyb@gmail.com.
赵建伟,女,1977年生,博士,教授,主要研究方向为机器学习、图像处理等.E-mail:zhaojw@amss.ac.cn.曹飞龙(通讯作者),男,1965年生,博士,教授,主要研究方向为智能计算、图像处理等.E-mail:feilongcao@gmail.com.
引用本文:   
吕永标,赵建伟,曹飞龙. 基于复合卷积神经网络的图像去噪算法*[J]. 模式识别与人工智能, 2017, 30(2): 97-105. Lü Yongbiao, ZHAO Jianwei, CAO Feilong. Image Denoising Algorithm
Based on Composite Convolutional Neural Network. , 2017, 30(2): 97-105.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201702001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2017/V30/I2/97
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn