[1] SIMMONS R, BROWNING B, ZHANG Y L, et al. Learning to Predict Driver Route and Destination Intent // Proc of the IEEE Intelligent Transportation Systems Conference. Washington, USA: IEEE, 2006: 127-132.
[2] LIAO L, PATTERSON D J, FOX D, et al. Learning and Inferring Transportation Routines. Artificial Intelligence, 2007, 171(5): 311-331.
[3] LIN M, HSU W J. Brownian Bridge Model for High Resolution Location Predictions // Proc of the Pacific-Asia Conference on Know-ledge Discovery and Data Mining. Berlin, Germany: Springer, 2014: 210-221.
[4] MONREALE A, PINELLI F, TRASARTI R, et al. WhereNext: A Location Predictor on Trajectory Pattern Mining // Proc of the 15th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 637-646.
[5] MORZY M. Mining Frequent Trajectories of Moving Objects for Location Prediction // Proc of the International Workshop on Machine Learning and Data Mining in Pattern Recognition. Berlin, Germany: Springer, 2007: 667-680.
[6] XUE A Y, ZHANG R, ZHENG Y, et al. Destination Prediction by Sub-trajectory Synthesis and Privacy Protection against Such Prediction // Proc of the 29th IEEE International Conference on Data Engineering. Washington, USA: IEEE, 2013: 254-265.
[7] CHEN M, LIU Y, YU X H. Predicting Next Locations with Object Clustering and Trajectory Clustering // Proc of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2015: 344-356.
[8] TRSARTI R, GUIDOTTI R, MONREALE A, et al. MyWay: Location Prediction via Mobility Profiling. Information Systems, 2017, 64: 360-367.
[9] YE M, YIN P F, LEE W C, et al. Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation // Proc of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2011: 325-334.
[10] YUAN Q, CONG G, MA Z Y, et al. Time-Aware Point-of-Interest Recommendation // Proc of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2013: 363-372.
[11] CHEN X F, ZENG Y F, CONG G, et al. On Information Coverage for Location Category Based Point-of-Interest Recommendation // Proc of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 37-43.
[12] LIAN D F, ZHAO C, XIE X, et al. GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation // Proc of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: USA: ACM, 2014: 831-840.
[13] LI X T, CONG G, LI X L, et al. Rank-GeoFM: A Ranking Based Geographical Factorization Method for Point of Interest Recommendation // Proc of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2015: 433-442.
[14] LIAN D F, ZHENG V W, XIE X. Collaborative Filtering Meets Next Check-in Location Prediction // Proc of the 22nd International Conference on World Wide Web. New York, USA: ACM, 2013: 231-232.
[15] CHENG C, YANG H Q, LYU M R, et al. Where You Like to Go Next: Successive Point-of-Interest Recommendation // Proc of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2013: 2605-2611.
[16] LIU Q, WU S, WANG L, et al. Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts // Proc of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 194-200.
[17] YUAN N J, ZHENG Y, XIE X, et al. Discovering Urban Functional Zones Using Latent Activity Trajectories. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 712-725.
[18] VACA C, QUERCIA D, BONCHI F, et al. Taxonomy-Based Discovery and Annotation of Functional Areas in the City // Proc of the 9th International AAAI Conference on Web and Social Media. Palo Alto, USA: AAAI Press, 2015: 445-453.
[19] FENG S S, LI X T, ZENG Y F, et al. Personalized Ranking Met-ric Embedding for Next New Poi Recommendation[C/OL]. [2017-10-23]. https://www.ijcai.org/Proceedings/15/Papers/293.pdf.
[20] HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory. Neural Computation, 1997, 9(8): 1735-1780.
[21] YU L T, ZHANG W N, WANG J, et al. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient // Proc of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 2852-2858.
[22] YANG Z, CHEN W, WANG F, et al. Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets[C/OL]. [2017-10-23]. https://arxiv.org/pdf/1703.04887.pdf.
[23] LI J W, MONREO W, SHI T L, et al. Adversarial Learning for Neural Dialogue Generation[C/OL]. [2017-10-23]. https://arxiv.org/pdf/1701.06547.pdf.
[24] 张志军,刘 弘.上下文感知的移动社交网络推荐算法研究.模式识别与人工智能, 2015, 28(5): 404-410.
(ZHANG Z J, LIU H. Research on Context-Awareness Mobile SNS Recommendation. Pattern Recognition and Artificial Intelligence, 2015, 28(5): 404-410.)
[25] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing Personalized Markov Chains for Next-Basket Recommendation // Proc of the 19th International Conference on World Wide Web. New York, USA: ACM, 2010: 811-820.
[26] XIAO T J, XU Y C, YANG K Y, et al. The Application of Two-Level Attention Models in Deep Convolutional Neural Network for Fine-Grained Image Classification // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 842-850.
[27] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[28] KARPATHY A, TODERICI G, SHETTY S, et al. Large-Scale Video Classification with Convolutional Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1725-1732.
[29] LIM Y. Convolutional Neural Networks for Sentence Classification[C/OL]. [2017-10-23]. https://arxiv.org/pdf/1408.5882.pdf.
[30] LAI S W, XU L H, LIU K, et al. Recurrent Convolutional Neural Networks for Text Classification // Proc of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2267-2273.
[31] 廖祥文,张丽瑶,宋志刚,等.基于卷积神经网络的中文微博观点分类.模式识别与人工智能, 2016, 29(12): 1075-1082.
(LIAO X W, ZHANG L Y, SONG Z G, et al. Chinese Microblog Sentiment Classification Based on Convolutional Neural Network. Pattern Recognition and Artificial Intelligence, 2016, 29(12): 1075-1082.)
[32] 张 剑,屈 丹,李 真.基于词向量特征的循环神经网络语言模型.模式识别与人工智能, 2015, 28(4): 299-305.
(ZHANG J, QU D, LI Z. Recurrent Neural Network Language Model Based on Word Vector Features. Pattern Recognition and Artificial Intelligence, 2015, 28(4): 299-305.)
[33] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets[C/OL]. [2017-10-23]. https://arxiv.org/pdf/1406.2661v1.pdf.
[34] DENTO E, CHINTALA S, SZLAM A, et al. Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks // Proc of the 28th International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2015: 1486-1494.
[35] 王坤峰,鲁 越,王雨桐,等.平行图像:图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7): 577-587.
(WANG K F, LU Y, WANG Y T, et al. Parallel Imaging: A New Theoretical Framework for Image Generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 577-587.)
[36] WILLIAMS R J, ZIPSER D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Computation, 1989, 1(2): 270-280.
[37] BENGIO Y, SIMARD P, FRASCONI P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[38] HOCHREITER S, BENGIO Y, FRASCONI P, et al. Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies[C/OL]. [2017-10-23]. http://www.bioinf.jku.at/publications/older/ch7.pdf. |