To improve the tracking accuracy and the robustness of object tracking by exploiting discriminative features of a tracking target effectively, an object tracking algorithm is proposed in the framework of particle filter tracking based on the feature selection and temporal consistency sparse appearance model. Firstly,some positive templates,negative templates,and candidate targets are sampled, and their corresponding features are selected according to the feature selection model. The redundant interferential information is deleted, and the key feature information is obtained. Secondly, a multi-task sparse representation model containing a temporal consistency regular term is established via the features of positive templates,negative templates, and candidate targets. It induces more candidate targets to have sparse representation similarities with the previous tracking results. Thirdly,the multi-task sparse representation model is solved to gain the discriminative sparse similarity map, and the discriminative score is obtained for each candidate target. Finally, the positive templates and the negative templates are updated according to the tracking results. Experiments demonstrate that the proposed tracking algorithm produces better accuracy than some tracking methods,even under the complex environments.
[1] LI A N, LIN M, WU Y, et al. NUS-PRO: A New Visual Tracking Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 335-349.
[2] ROSS D A, LIM J, LIN R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141.
[3] LIU B Y, YANG L, HUANG J Z, et al. Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization // Proc of the 11th European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 624-637.
[4] HARE S, SAFFARI A, TORR P H S. Struck: Structured Output Tracking with Kernels // Proc of the International Conference on Computer Vision. Washington, USA: IEEE, 2011: 263-270.
[5] ZHANG K H, ZHANG L, YANG M. Fast Compressive Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
[6] WANG Q, CHEN F, XU W L, et al. Online Discriminative Object Tracking with Local Sparse Representation // Proc of the IEEE Workshop on Applications of Computer Vision. Washington, USA: IEEE, 2012: 425-432.
[7] 胡正平,谢荣路,王 蒙,等.基于全局与局部结构反稀疏外观模型的目标跟踪算法.模式识别与人工智能, 2016, 29(12): 1065-1074.
(HU Z P, XIE R L, WANG M. Object Tracking via Global and Local Structural Inverse Sparse Appearance Model. Pattern Recognition and Artificial Intelligence, 2016, 29(12): 1065-1074.)
[8] MEI X, LING H B. Robust Visual Tracking Using L1 Minimization // Proc of 12th International Conference on Computer Vision. Washington, USA: IEEE, 2009: 1436-1443.
[9] ZHANG T Z, LIU S, XU C S, et al. Structural Sparse Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 150-158.
[10] ZHANG L H, LU H C, DU D D, et al. Sparse Hashing Tracking. IEEE Transactions on Image Processing, 2016, 25(2): 840-849.
[11] ZHUANG B H, LU H C, XIAO Z Y, et al. Visual Tracking via Discriminative Sparse Similarity Map. IEEE Transactions on Image Processing, 2014, 23(4): 1872-1881.
[12] ZHONG W, LU H C, YANG M H. Robust Object Tracking via Sparse Collaborative Appearance Model. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
[13] ZHANG T Z, LIU S, AHUJA N, et al. Robust Visual Tracking via Consistent Low-Rank Sparse Learning. International Journal of Computer Vision, 2015, 111(2): 171-190.
[14] ZHANG T Z, GHANEM B, LIU S, et al. Robust Visual Tracking via Multi-task Sparse Learning. International Journal of Computer Vision, 2013, 101(2): 367-383.
[15] ADAM A, RIVLIN E, SHIMSHONI I. Robust Fragments-Based Tracking Using the Integral Histogram // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2006, I: 798-805.
[16] JIA X, LU H C, YANG M H. Visual Tracking via Adaptive Structural Local Sparse Appearance Model // Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 1822-1829.
[17] BAO C L, WU Y, LING H B, et al. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 1830-1837.
[18] KWON J, LEE K M. Visual Tracking Decomposition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 1269-1276.
[19] BABENKO B, YANG M H, BELONGIE S, et al. Visual Tracking with Online Multiple Instance Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 983-990.
[20] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2012, IV: 702-715.
[21] WU Y, LIM J, YANG M H. Object Tracking Benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.