[1] DOLLÁR P, APPEL R, BELONGIE S, et al. Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532-1545.
[2] GALL J, LEMPITSKY V. Class-Specific Hough Forests for Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2013: 1022-1029.
[3] KALA R. Advanced Driver Assistance Systems // SURHONE L M, TENNOE M T, HENSSONOW S F, eds. On-Road Intelligent Vehicles. Cambridge, USA: Elsevier, 2016: 59-82.
[4] JAZAYERI A, CAI H Y, ZHENG J Y, et al. Vehicle Detection and Tracking in Car Video Based on Motion Model. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 583-595.
[5] CARAFFI C, VOJÍRˇ T, TREFNY/ J, et al. A System for Real-Time Detection and Tracking of Vehicles from a Single Car-Mounted Ca-mera // Proc of the 15th IEEE International Conference on Intelligent Transportation Systems. Washington, USA: IEEE, 2012: 975-982.
[6] WANG M, DAAMEN W, HOOGENDOORN S P, et al. Driver Assistance Systems Modeling by Model Predictive Control // Proc of the 15th IEEE International Conference on Intelligent Transportation Systems. Washington, USA: IEEE, 2012: 1543-1548.
[7] CHO H, SEO Y W, KUMAR B V K V, et al. A Multi-sensor Fusion System for Moving Object Detection and Tracking in Urban Driving Environments // Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 2014: 1836-1843.
[8] LEVINSON J, ASKELAND J, BECKER J, et al. Towards Fully Autonomous Driving: Systems and Algorithms // Proc of the IEEE Intelligent Vehicles Symposium. Washington, USA: IEEE, 2011: 163-168.
[9] ZHOU X W, YANG C, YU W C. Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597-610.
[10] OREIFEJ O, LI X, SHAH M. Simultaneous Video Stabilization and Moving Object Detection in Turbulence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 450-462.
[11] KULCHANDANI J S, DANGARWALA K J. Moving Object Detection: Review of Recent Research Trends // Proc of the International Conference on Pervasive Computing. Washington, USA: IEEE, 2015. DOI: 10.1109/PERVASIVE.2015.7087138.
[12] CHAVEZ-GARCIA R O, AVCARD O. Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 525-534.
[13] HU W C, CHEN C H, CHEN T Y, et al. Moving Object Detection and Tracking from Video Captured by Moving Camera. Journal of Visual Communication & Image Representation, 2015, 30: 164-180.
[14] WANG J D, JIANG H Z, YUAN Z J, et al. Salient Object Detection: A Discriminative Regional Feature Integration Approach // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2013: 2083-2090.
[15] SZEGEDY C, REED S, ERHAN D, et al. Scalable, High-Quality Object Detection[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1412.1441v2.pdf.
[16] SZEGEDY C, TOSHEV A, ERHAN D. Deep Neural Networks for Object Detection // BURGES C J C, BOTTOU L, WELLING M, et al., eds. Advances in Neural Information Processing Systems 26. Cambridge, USA: The MIT Press, 2013: 2553-2561.
[17] WANG X Y, HAN T X, YAN S C. An HOG-LBP Human Detector with Partial Occlusion Handling // Proc of the 12th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2009: 32-39.
[18] DALAL N, TRIGGS B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2005: 886-893.
[19] ZHU Q, YEH M C, CHENG K T, et al. Fast Human Detection Using a Cascade of Histograms of Oriented Gradients // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2006: 1491-1498.
[20] LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
[21] LUO J, GWUN O. A Comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing, 2013, 3(4): 143-152.
[22] LIU C, YUEN J, TORRALBA A. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978-994.
[23] DIVVALA S K, EFROS A A, HEBERT M. How Important Are “Deformable Parts” in the Deformable Parts Model? // Proc of the 12th European Conference on Computer Vision. London, UK: Springer-Verlag, 2012, III: 31-40.
[24] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object Detection with Discriminatively Trained Part Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
[25] GIRSHICK R, IANDOLA F, BARRELL T, et al. Deformable Part Models Are Convolutional Neural Networks[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1703.06211.pdf.
[26] OUYANG W L, WANG X G. Joint Deep Learning for Pedestrian Detection // Proc of the IEEE International Conference on Compu-ter Vision. Washington, USA: IEEE, 2013: 2056-2063.
[27] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective Search for Object Recognition. International Journal of Computer Vision, 2013, 104(2): 154-171.
[28] ZHU G, PORIKLI F, LI H D. Tracking Randomly Moving Objects on Edge Box Proposals[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1507.08085.pdf.
[29] DENG J, DONG W, SOCHER R, et al. ImageNet: A Large-Scale Hierarchical Image Database // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 248-255.
[30] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft Coco: Common Objects in Context // Proc of the 13th European Conference on Computer Vision. New York, USA: Springer, 2014: 740-755.
[31] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Cla-ssification with Deep Convolutional Neural Networks. Communications of the ACM, 2017, 60(6): 84-90.
[32] SZEGEDY C, ERHAN D, TOSHEV A T. Object Detection Using Deep Neural Networks[P/OL]. [2017-12-10]. http://www.freepatentsonline.com/9275308.pdf.
[33] LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[34] HANSEN L K, SALAMON P. Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
[35] KINGSBURY B, SAINATH T N, SOLTAU H. Scalable Minimum Bayes Risk Training of Deep Neural Network Acoustic Models Using Distributed Hessian-Free Optimization // Proc of the 13th Annual Conference of International Speech Communication Association. New York, USA: ACM, 2012: 10-13.
[36] XU L, REN J S J, LIU C, et al. Deep Convolutional Neural Network for Image Deconvolution // GHAHRAMANI Z, WELLING M, CORTES C, et al., eds. Advances in Neural Information Processing Systems 27. Cambridge, USA: The MIT Press, 2014: 1790-1798.
[37] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J/OL]. [2017-12-10]. https://arxiv.org/pdf/1409.1556.pdf.
[38] SZEGEDY C, LIU W, JIA Y Q, et al. Going Deeper with Convolutions[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1409.4842.pdf.
[39] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 770-778.
[40] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation // Proc of the IEEE Conference on Computer Vision and Pa-ttern Recognition. Washington, USA: IEEE, 2013: 580-587.
[41] HE K M, ZHANG X Y, REN S Q, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[42] GIRSHICK R. Fast R-CNN // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1440-1448.
[43] REN S Q, HE K M, Girshick R B, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[44] DAI J F, LI Y, HE K M, et al. R-FCN: Object Detection via Region-Based Fully Convolutional Networks // LEE D D, SUGIYAMA M, LUXBURG U V, et al., eds. Advances in Neural Information Processing Systems 29. Cambridge, USA: The MIT Press, 2016: 379-387.
[45] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 779-788.
[46] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot Multibox Detector // Proc of the 14th European Conference on Computer Vision. New York, USA: Springer, 2016, I: 21-37.
[47] ZEILER M D, FERGUS R. Visualizing and Understanding Convolutional Neural Networks // Proc of the 13th European Conference on Computer Vision. New York: USA: Springer, 2014, I: 818-833.
[48] LIN M, CHEN Q, YAN S C. Network in Network[J/OL]. [2017-12-10]. https://arxiv.org/pdf/1312.4400.pdf.
[49] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2818-2826.
[50] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inceptionv4, Inception-Resnet and the Impact of Residual Connections on Learning[J/OL]. [2017-12-10]. https://arxiv.org/pdf/1602.07261.pdf.
[51] XIE S N, GIRSHICK R B, DOLLÁR P, et al. Aggregated Residual Transformations for Deep Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5987-5995.
[52] ZAGORUYKO S, KOMODAKIS N. Wide Residual Networks[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1605.07146.pdf.
[53] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 2261-2269.
[54] CHEN Y P, LI J N, GE H X, et al. Dual Path Networks // GUYON I, LUXBURG U V, BENGION S, et al., eds. Advances in Neural Information Processing Systems 30. Cambridge, USA: The MIT Press, 2017: 4470-4478.
[55] HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1709.01507.pdf.
[56] KONG T, YAO A B, CHEN Y R, et al. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Re-cognition. Washington, USA: IEEE, 2016: 845-853.
[57] BELL S, ZITNICK L C, BALA K, et al. Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2874-2883.
[58] WANG X L, SHRIVASTAVA A, GUPTA A. A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 3039-3048.
[59] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial Transformer Networks // CORTES C, LAWRENCE N D, LEEE D O, et al., eds. Advances in Neural Information Processing Systems 28. Cambridge, USA: The MIT Press, 2015: 2017-2025.
[60] LIN C H, LUCEY S. Inverse Compositional Spatial Transformer Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2252-2260.
[61] S0ØNDERBY S K, S0ØNDERBY C K, MAAL0ØE L, et al. Recurrent Spatial Transformer Networks[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1509.05329.pdf.
[62] OUYANG W L, WANG X G, ZENG X Y, et al. Deepid-Net: Deformable Deep Convolutional Neural Networks for Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 2403-2412.
[63] DAI J F, QI H Z, XIONG Y W, et al. Deformable Convolutional Networks // Proc of the IEEE International Conference on Compu-ter Vision. Washington, USA: IEEE, 2017: 764-773.
[64] YOO D, PARK S, LEE J Y, et al. Attentionnet: Aggregating Weak Directions for Accurate Object Detection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 2659-2667.
[65] NAJIBI M, RASTEGARI M, DAVIS L S. G-CNN: An Iterative Grid Based Object Detector // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2369-2377.
[66] FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional Single Shot Detector[C/OL]. [2017-12-10]. https://arxiv.org/pdf/1701.06659.pdf.
[67] KONG T, SUN F C, YAO A B, et al. RON: Reverse Connection
with Objectness Prior Networks for Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5244-5252. |