模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2018, Vol. 31 Issue (9): 837-844    DOI: 10.16451/j.cnki.issn1003-6059.201809006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于覆盖最优划分的社团发现算法
杨雪洁1,2,陈洁1,赵姝1,钱峰1,3,张燕平1
1.安徽大学 计算机科学与技术学院 合肥 230601
2.合肥师范学院 计算机学院 合肥 230601
3.铜陵学院 数学与计算机学院 铜陵 244061
Community Detection Algorithm Based on Optimal Partition of Covers
YANG Xuejie1,2, CHEN Jie1, ZHAO Shu1, QIAN Feng1,3, ZHANG Yanping1
1.School of Computer Science and Technology, Anhui University, Hefei 230601
2.School of Computer Science and Technology, Hefei Normal University, Hefei 230601
3.School of Mathematics and Computer Science, Tongling University, Tongling 244061

全文: PDF (818 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

覆盖最优划分思想是将子集间重叠区域样本通过覆盖的合并和分割,使原来有交集的覆盖划分为无交集的类误差最小.文中将覆盖的最优划分思想引入社团发现中,提出基于覆盖最优划分的社团发现算法(CDA_OPC),将社团发现问题转化为求给定覆盖的最优划分问题.首先利用节点间邻域重叠关系构造覆盖,然后运用覆盖的最优划分概念,通过覆盖子集的合并与分割达到对覆盖的最优逼近,最后计算社团间的相似度,将相似度最大的社团两两合并,在多层次合并后最终形成多粒度的社团结构.在真实网络上的实验表明,CDA_OPC可以有效划分社团.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雪洁
陈洁
赵姝
钱峰
张燕平
关键词 覆盖复杂网络社团发现相似度    
Abstract

The overlapped region samples are divided through merging and dividing operation of sets based on the optimal partition concept, and thus the partition achieves minimal error. In this paper, the optimal partition of cover is introduced into the community detection, and a community detection algorithm based on optimal partition of covers(CDA_OPC) is proposed. The problem of community detection is converted to the optimal partition problem for the fixed coverage. In CDA_OPC, the covers can be constructed by utilizing the overlapped relationship between the nodes. Secondly, the optimal approximation of coverage is obtained through the merging and segmentation of covering subsets based on the concept of the optimal partition. Finally, the similarity between communities is calculated, and the multi-granularity community structure is finally formed through multi-level integration. Experimental results on real networks show that CDA _OPC is effective at community detection of networks.

Key wordsCover    Complex Network    Community Detection    Similarity   
收稿日期: 2018-04-15     
ZTFLH: TP 181  
基金资助:

国家自然科学基金项目(No.61673020,61602003)、安徽省自然科学基金项目(No.1708085QF156)资助

作者简介: 杨雪洁,硕士,讲师,主要研究方向为智能计算、数据挖掘、机器学习.E-mail:yxj1982_colour@163.com.陈 洁(通讯作者),博士,副教授,主要研究方向为智能计算、机器学习、三支决策.E-mail:chenjie200398@163.com.赵 姝,博士,教授,主要研究方向为机器学习、社交网络、粒计算.E-mail:zhaoshuzs2002@hotmail.com.
引用本文:   
杨雪洁,陈洁,赵姝,钱峰,张燕平. 基于覆盖最优划分的社团发现算法[J]. 模式识别与人工智能, 2018, 31(9): 837-844. YANG Xuejie, CHEN Jie, ZHAO Shu, QIAN Feng, ZHANG Yanping. Community Detection Algorithm Based on Optimal Partition of Covers. , 2018, 31(9): 837-844.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201809006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2018/V31/I9/837
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn