模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2018, Vol. 31 Issue (10): 958-964    DOI: 10.16451/j.cnki.issn1003-6059.201810010
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
融合RGB-D多模特征和半径边缘约束超限学习的动作识别
刘天亮1,陈克虎1,戴修斌1,罗杰波2
1.南京邮电大学 江苏省图像处理与图像通信重点实验室 南京 210003
2.罗彻斯特大学 计算机科学系 罗彻斯特 14627
Action Recognition Fused with RGB-D Multi-modal Features and Radius-Margin Bounded Extreme Learning
LIU Tianliang1, CHEN Kehu1, DAI Xiubin1, LUO Jiebo2
1.Jiangsu Provincial Key Laboratory of Image Processing and Image Communication, Nanjing University of Posts and Telecommunications, Nanjing 210003
2.Department of Computer Science, University of Rochester, Rochester 14627

全文: PDF (653 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

针对单模态特征鉴别行为动作类别的能力有限问题,提出基于RGB-D视频中多模态视觉特征融合和实例化多重核超限学习(Exemplars-MKL-ELM)的动作分类方法.首先,利用骨架表面拟合和密集轨迹提取稳健的密集运动姿态特征,以稠密点云法平面感知人体3维几何的稀疏化有向主成分直方图特征,提取外观纹理嵌入身体节点空-时邻域的三维梯度直方图特征.然后,采用半径边缘约束多重核超限学习机融合多模态视觉特征,并利用对比数据法挖掘每个行为类别的代表性实例集合.最后,每个样本结合融合视觉特征和即得实例集合,采用Exemplars-MKL-ELM模型和贪婪预测思想分层分类识别行为.实验表明,文中方法在分类准确度和计算效率上都较优.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘天亮
陈克虎
戴修斌
罗杰波
关键词 多模态特征多核学习超限学习机RGB-D视频    
Abstract

An exemplars multiple kernel learning-extreme learning machine(MKL-ELM) based human action recognition approach with multi-modal visual feature fusion from RGB-D videos is proposed to solve the problem of single modal visual feature with the limited discrimination ability for all categories of human actions. Firstly, the robust and dense moving pose features with human skeleton surface fitting and dense trajectories from human motion are extracted. The sparse histogram of oriented principal component(SHOPC) features of 3D body geometry with the normal plane of dense point clouds is perceived and the histogram of 3D gradient orientation(HOG3D) features embedded with human appearance textures on spatial temporal neighbor of body nodes in the given videos is extracted. The modified MKL-ELM with radius-margin bound is exploited to fuse the given multi-modal visual features. Then, the set of the representative exemplars for each human action is mined with the contrast data technique. Finally, each sample is hierarchically classified by the designed exemplars-MKL-ELM model with greedy prediction strategy to recognize the human actions with the fused features and the given exemplars. The experiments show that compared with the traditional methods, the proposed action recognition method has significant advantages with high classification accuracy and computational efficiency.

收稿日期: 2018-01-24     
ZTFLH: TP 391.41  
基金资助:

国家自然科学基金项目(No.61001152,31200747,61071091,61071166,61172118)、江苏省自然科学基金项目(No.BK2012437)、南京邮电大学校级科研基金项目(No.NY214037)、国家留学基金项目资助

作者简介: 刘天亮(通讯作者),博士,副教授,主要研究方向为图像处理、计算机视觉.E-mail:liutl@njupt.edu.cn.;戴修斌,博士,副教授,主要研究方向为医学图像重建、图像处理、模式识别.E-mail:daixb@njupt.edu.cn.;罗杰波,博士,教授,主要研究方向为图像处理、计算机视觉、机器学习、数据挖掘、社交网络媒体.E-mail:jluo@cs.rochester.edu.
引用本文:   
刘天亮,陈克虎,戴修斌,罗杰波. 融合RGB-D多模特征和半径边缘约束超限学习的动作识别[J]. 模式识别与人工智能, 2018, 31(10): 958-964. LIU Tianliang, CHEN Kehu, DAI Xiubin, LUO Jiebo. Action Recognition Fused with RGB-D Multi-modal Features and Radius-Margin Bounded Extreme Learning. , 2018, 31(10): 958-964.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201810010      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2018/V31/I10/958
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn