模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2019, Vol. 32 Issue (3): 193-203    DOI: 10.16451/j.cnki.issn1003-6059.201903001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于改进YOLO和迁移学习的水下鱼类目标实时检测
李庆忠1,李宜兵1,牛炯1
1.中国海洋大学 工程学院 青岛 266100
Real-Time Detection of Underwater Fish Based on Improved YOLO and Transfer Learning
LI Qingzhong1, LI Yibing1, NIU Jiong1
1.College of Engineering, Ocean University of China, Qingdao 266100

全文: PDF (1432 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了实现非限制环境中水下机器人基于视频图像的水下鱼类目标快速检测,提出基于改进YOLO和迁移学习的水下鱼类目标实时检测算法.针对YOLO网络的不足,设计适合水下机器人嵌入式系统计算能力的精简YOLO网络(Underwater-YOLO).利用迁移学习方法训练Underwater-YOLO网络,克服海底鱼类已知样本集有限的限制.利用基于限制对比度自适应直方图均衡化的水下图像增强预处理算法,克服水下图像的降质问题.利用基于帧间图像结构相似度的选择性网络前向计算策略,提高视频帧检测速率.实验表明,文中算法能实现在非限制环境下海底鱼类目标的实时检测.相比YOLO,文中算法对海底鱼类小目标和重叠目标具有更好的检测性能.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李庆忠
李宜兵
牛炯
关键词 卷积神经网络深度学习鱼类目标检测单级式目标检测算法(YOLO)迁移学习    
Abstract:To fast detect underwater fish in unrestricted underwater environment based on underwater video collected by underwater robots, a real-time detection algorithm for underwater fish based on improved you only look once(YOLO) and transfer learning is proposed. Firstly, an underwater-YOLO for the embedding computer system of underwater robots is designed to overcome the shortcomings of traditional YOLO. Then, transfer learning strategy is employed to train the underwater-YOLO network and alleviate the limitation of known underwater fish samples. A preprocessing algorithm based on contrast limited adaptive histogram equalization is proposed to overcome the problem of underwater image degradation. Finally, a video frame selection method for foreground computation of underwater-YOLO based on structure similarity between inter-frames is proposed to increase the detection frame rate. The experimental results show that the proposed algorithm achieves the goal of real-time detection of underwater fish in unconstrained underwater environment. Compared with the traditional YOLO,the proposed underwater-YOLO generates better detection performance in complex scenes with small fish and overlapped fishes.
Key wordsConvolutional Neural Network    Deep Learning    Fish Target Detection    You Only Look Once(YOLO)    Transfer Learning   
收稿日期: 2018-11-14     
ZTFLH: TP 181  
基金资助:国家重点研发计划项目(No.2017YFC1405202)、国家自然科学基金项目(No.61132005)、海洋公益性行业科研专项(No.201605002)
作者简介: 李庆忠,博士,教授,主要研究方向为图像处理、信号处理、模式识别.E-mail:liqingzhong@ouc.edu.cn.
牛 炯,博士研究生,工程师,主要研究方向为高频雷达信号处理、高频雷达海洋环境监测技术.E-mail:459258810@qq.com.
引用本文:   
李庆忠,李宜兵,牛炯. 基于改进YOLO和迁移学习的水下鱼类目标实时检测[J]. 模式识别与人工智能, 2019, 32(3): 193-203. LI Qingzhong, LI Yibing, NIU Jiong. Real-Time Detection of Underwater Fish Based on Improved YOLO and Transfer Learning. , 2019, 32(3): 193-203.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201903001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2019/V32/I3/193
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn