[1] 倪 林,李少青,马瑞聪,等.硬件木马检测与防护.数字通信, 2014, 41(1): 59-63, 68.
(NI L, LI S Q, MA R C, et al. Hardware Trojans Detection and Protection. Digital Communication, 2014, 41(1): 59-63, 68.)
[2] 许 强,蒋兴浩,姚立红,等.硬件木马检测与防范研究综述.网络与信息安全学报, 2017, 3(4): DOI:10.11959/j.issn.2096-109x.2017.00160.
(XU Q, JIANG X H, YAO L H, et al. Overview of the Detection and Prevention Study of Hardware Trojans. Chinese Journal of Network and Information Security, 2017, 3(4): DOI:10.11959/j.issn.2096-109x.2017.00160.)
[3] 王 侃,陈 浩,管旭光,等.硬件木马防护技术研究.网络与信息安全学报, 2017, 3(9): DOI:10.11959/j.issn.2096-109x.2017.00197.
(WANG K, CHEN H, GUAN X G, et al. Research on Hardware Trojan Defense. Chinese Journal of Network and Information Security, 2017, 3(9): DOI:10.11959/j.issn.2096-109x.2017.00197.)
[4] 苏 衡,周 杰,张志浩.超分辨率图像重建方法综述.自动化学报, 2013, 39(8): 1202-1213.
(SU H, ZHOU J, ZHANG Z H. Survey of Super-Resolution Image Reconstruction Methods. Acta Automatica Sinica, 2013, 39(8): 1202-1213.)
[5] SCHULTZ R R, STEVENSON R L. A Bayesian Approach to Image Expansion for Improved Definition. IEEE Transactions on Image Processing, 1994, 3(3): 233-242.
[6] HOU H, ANDREWS H. Cubic Splines for Image Interpolation and Digital Filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508-517.
[7] LI X, ORCHARD M T. New Edge-Directed Interpolation. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527.
[8] WANG Q, WARD R K. A New Orientation-Adaptive Interpolation Method. IEEE Transactions on Image Processing, 2007, 16(4): 889-900.
[9] HUANG T S, TSAI R Y. Multiframe Image Restoration and Registration // HUANG T S, ed. Advances in Computer Vision and Image Processing. London, UK: JAI Press, 1984: 317-339.
[10] IRANI M, PELEG S. Improving Resolution by Image Registration. CVGIP: Graphical Models and Image Processing, 1991, 53(3): 231-239.
[11] STARK H, OSKOUI P. High-Resolution Image Recovery from Image-Plane Arrays, Using Convex Projections. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726.
[12] SCHULTZ R R, STEVENSON R L. Improved Definition Video Frame Enhancement // Proc of the International Conference on Acoustics, Speech, and Signal Processing. Washington, USA: IEEE, 1995, IV: 2169-2172.
[13] ELAD M, FEUER A. Restoration of a Single Superresolution Image from Several Blurred, Noisy, and Undersampled Measured Images. IEEE Transactions on Image Processing, 1997, 6(12): 1646-1658.
[14] CHANG H, YEUNG D Y, XIONG Y M. Super-Resolution through Neighbor Embedding // Proc of the IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004, I: 275-282.
[15] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neigh-bor Embedding[C/OL]. [2018-06-30]. http://www.bmva.org/bmvc/2012/BMVC/paper135/abstract135.pdf.
[16] FAN W, YEUNG D Y. Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2007. DOI: 10.1109/CVPR.2007.383001.
[17] YANG J C, WRIGHT J, HUANG T S, et al. Image Super-Resolution via Sparse Representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
[18] ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-Up Using Sparse-Representations // Proc of the International Confe-rence on Curves and Surfaces. Berlin, Germany: Springer, 2010: 711-730.
[19] TIMOFTE R, DE SMET V, VAN GOOL L. Anchored Neighborhood Regression for Fast Example-Based Super-Resolution // Proc of the IEEE International Conference on Computer Vision. Wa-shington, USA: IEEE, 2013: 1920-1927.
[20] DONG C, LOY C C, HE K M, et al. Learning a Deep Convolutional Network for Image Super-Resolution // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 184-199.
[21] 肖进胜,刘恩雨,朱 力,等.改进的基于卷积神经网络的图像超分辨率算法.光学学报, 2017, 37(3): 103-111.
(XIAO J S, LIU E Y, ZHU L, et al. Improved Image Super-Resolution Algorithm Based on Convolutional Neural Network. Acta Optica Sinica, 2017, 37(3): 103-111.)
[22] 胡长胜,詹 曙,吴从中.基于深度特征学习的图像超分辨率重建.自动化学报, 2017, 43(5): 814-821.
(HU C S, ZHAN S, WU C Z. Image Super-Resolution Based on Deep Learning Features. Acta Automatica Sinica, 2017, 43(5): 814-821.)
[23] DONG C, LOY C C, TANG X O. Accelerating the Super-Resolution Convolutional Neural Network // Proc of the 14th European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 391-407.
[24] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1874-1883.
[25] KIM J, LEE J K, LEE K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1646-1654.
[26] KIM J, LEE J K, LEE K M. Deeply-Recursive Convolutional Network for Image Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washinton, USA: IEEE, 2016: 1637-1645.
[27] TAI Y, YANG J, LIU X M. Image Super-Resolution via Deep Recursive Residual Network // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 2790-2798.
[28] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5835-5843.
[29] ZHANG K, ZUO W M, ZHANG L. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 3262-3271.
[30] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 4681-4690.
[31] 邵保泰,汤心溢,金 璐,等.基于生成对抗网络的单帧红外图像超分辨算法.红外与毫米波学报, 2018, 37(4): 427-432.
(SHAO B T, TANG X Y, JIN L, et al. Single Frame Infrared Image Super-Resolution Algorithm Based on Generating Adversarial Nets. Journal of Infrared and Millimeter Waves, 2018, 37(4): 427-432.)
[32] 许少华,路 阳,席海青,等.样本先验知识在神经网络训练中的应用.大庆石油学院学报, 2004, 28(6): 66-69, 114.
(XU S H, LU Y, XI H Q, et al. Application of Sample Prior Knowledge to Neural Network Training. Journal of Daqing Petroleum Institute, 2004, 28(6): 66-69, 114.)
[33] 陈翀伟,陈德钊,叶向群,等.基于先验知识的前馈网络对原油实沸点蒸馏曲线的仿真.高校化学工程学报, 2001, 4(15): 351-356.
(CHEN C W, CHEN D Z, YE X Q, et al. Feedforward Network Based on Prior Knowledge and Its Application in Modeling the True Boiling Point Curve of the Crude Oil. Journal of Chemical Engineering of Chinese Universities, 2001, 4(15): 351-356.)
[34] 吴媛媛,何小海,孙琰玥,等.基于小波局部适应插值IBP算法的视频超分辨率重建.四川大学学报(自然科学版), 2011, 48(2): 349-355.
(WU Y Y, HE X H, SUN Y Y, et al. Video Super-Resolution Reconstruction Based on Local-Adaptation Interpolation Wavelet Transform IBP Algorithm. Journal of Sichuan University(Natural Science Edition), 2011, 48(2): 349-355.)
[35] 王春霞,苏红旗,范郭亮.图像超分辨率重建技术综述.计算机技术与发展, 2011, 21(5): 124-127.
(WANG C X, SU H Q, FAN G L. Overview on Super Resolution Image Reconstruction. Computer Technology and Development, 2011, 21(5): 124-127.)
[36] PASCANU R, MIKOLOV T, BENGIO Y. On the Difficulty of Training Recurrent Neural Networks // Proc of the 30th International Conference on Machine Learning. New York, USA: ACM, 2013, III: 1310-1318.
[37] MARTIN D, FOWLKES C, TAL D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics // Proc of the 8th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2001: 416-423.
[38] 林顺达.Chen-Mobius变换在图像处理应用中的GUI实现.科技资讯, 2013(36): 1-3.
(LIN S D. The Realization of Image Processing on the Based of Chen-Mobius in GUI Interface. Science and Technology Information, 2013(36): 1-3.)
[39] LAI W S, HUANG J B, AHUJA N, et al. Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks[J/OL]. [2018-07-30]. https://arxiv.org/pdf/1710.01992.pdf. |