[1] ZHANG C Q, FU H Z, LIU S, et al. Low-Rank Tensor Constrained Multiview Subspace Clustering // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1582-1590.
[2] PENG X, XIAO S J, FENG J S, et al. Deep Subspace Clustering with Sparsity Prior // Proc of the 25th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1925-1931.
[3] YIN M, WU Z Z, ZENG D Y, et al. Sparse Subspace Clustering with Jointly Learning Representation and Affinity Matrix. Journal of the Franklin Institute, 2018, 355(8): 3795-3811.
[4] LIU G C, LIN Z C, YAN S C, et al. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[5] ZHANG M M, LI W, DU Q. Joint Low Rank and Sparse Representation-Based Hyperspectral Image Classification // Proc of the 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Washington, USA: IEEE, 2016. DOI: 10.1109/WHISPERS.2016.8071748.
[6] YAO C, HAN J W, NIE F P, et al. Local Regression and Global Information-Embedded Dimension Reduction. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4882-4893.
[7] 谈 超,关佶红,周水庚.增量与演化流形学习综述.智能系统学报, 2012, 7(5): 377-388.
(TAN C, GUAN J H, ZHOU S G. Incremental and Evolutionary Manifold Learning: A Survey. CAAI Transactions on Intelligent Systems, 2012, 7(5): 377-388.)
[8] TANG K W, SU Z X, JIANG W, et al. Robust Subspace Learning-Based Low-Rank Representation for Manifold Clustering. Neural Computing and Applications, 2018. DOI: https://doi.org/10.1007.
[9] DONG Y X, YANG C Z. Cluster-Based Least Absolute Deviation Regression for Dimension Reduction. Journal of Statistical Theory and Practice, 2016, 10(1): 121-132.
[10] JIANG Z, ZHENG Y, TAN H C, et al. Variational Deep Embe-dding: A Generative Approach to Clustering // Proc of the 26th International Joint Conference on Artificial Intelligence. Washington, USA: IEEE, 2017: 1965-1972.
[11] YANG B, FU X, SIDIROPOULOS N D, et al. Towards K-means-Friendly Spaces: Simultaneous Deep Learning and Clustering // Proc of the 34th International Conference on Machine Learning. New York, USA: ACM, 2017: 3861-3870.
[12] 黄健航,雷迎科.基于边际Fisher深度自编码器的电台指纹特征提取.模式识别与人工智能, 2017, 30(11): 1030-1038.
(HUANG J H, LEI Y K. Radio Fingerprint Extraction Based on Marginal Fisher Deep Autoencoder. Pattern Recognition and Artificial Intelligence, 2017, 30(11): 1030-1038.)
[13] CARON M, BOJANOWSKI P, JOULIN A, et al. Deep Clustering for Unsupervised Learning of Visual Features // Proc of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 139-156.
[14] PENG X, FENG J S, XIAO S J, et al. Structured AutoEncoders for Subspace Clustering. IEEE Transactions on Image Processing, 2018, 27(10): 5076-5086.
[15] ZHAO J B, MATHIEU M, GOROSHIN R, et al. Stacked What-Where Auto-Encoders. Computer Science, 2015, 15(1): 3563-3593.
[16] DIZAJI K G, HERANDI A, DENG C, et al. Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization // Proc of the 2th International Conference on Computer Vision. Washington, USA: IEEE, 2017: 5747-5756.
[17] YANG J W, PARIKH D, BATRA D. Joint Unsupervised Learning of Deep Representations and Image Clusters // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1354-1362.
[18] CHEN Y Y, ZHANG L, ZHANG Y. A Novel Low Rank Representation Algorithm for Subspace Clustering. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(4). DOI: 10.1142/S0218001416500075.
[19] 张 涛,唐振民,吕建勇.一种基于低秩表示的子空间聚类改进算法.电子与信息学报, 2016, 38(11): 2811-2818.
(ZHANG T, TANG Z M, Lv J Y. Improved Algorithm Based on Low Rank Representation for Subspace Clustering. Journal of Electronics and Information Technology, 2016, 38(11): 2811-2818.)
[20] FAVARO P, VIDAL R, RAVICHANDRAN A. A Closed form Solution to Robust Subspace Estimation and Clustering // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 1801-1807.
[21] GUO X F, GAO L, LIU X W, et al. Improved Deep Embedded Clustering with Local Structure Preservation // Proc of the 26th International Joint Conference on Artificial Intelligence. Washington, USA: IEEE, 2017: 1753-1759.
[22] ELHAMIFAR E, VIDAL R. Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
[23] TIAN F, GAO B, CUI Q, et al. Learning Deep Representations for Graph Clustering // Proc of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1293-1299.
[24] LU C Y, MIN H, ZHAO Z Q, et al. Robust and Efficient Subspace Segmentation via Least Squares Regression // Proc of the 12th European Conference on Computer Vision. Berlin, Germany: Springer, 2012: 347-360. |