模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2019, Vol. 32 Issue (9): 821-827    DOI: 10.16451/j.cnki.issn1003-6059.201909006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
结合非局部与分块特征的跨视角步态识别
冯世灵1, 王修晖1
1.中国计量大学 信息工程学院 杭州310018
Cross-View Gait Recognition Combined with Non-local and Part-level Features
FENG Shiling1, WANG Xiuhui1
1.College of Information Engineering, China Jiliang University, Hangzhou 310018

全文: PDF (565 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 目前基于深度学习的步态识别方法大多通过叠加卷积层获取全局特征,忽略有利于细粒度分类的局部特征.针对上述问题,文中提出结合非局部与分块特征的跨视角步态识别方法.将一对步态能量图(GEI)作为输入,提取单样本的非局部信息与样本对之间的相对非局部信息.为了更好地提取局部特征,根据GEI的几何特性,将人体区域水平切分为静态块、微动态块和强动态块,连接至3个二值分类器分别进行训练.在OU-ISIR-LP和CASIA-B步态数据集上的对比实验表明,文中方法的正确识别率较高.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯世灵
王修晖
关键词 步态识别跨视角识别非局部特征分块特征    
Abstract:In most existing gait recognition methods based on deep learning, global features are acquired by stacking convolutional layers, and local features beneficial to fine-grained classification are ignored. Aiming at this problem, a cross-view gait recognition method is proposed by combining non-local and part-level features. A pair of gait energy images(GEIs) is used as input to extract the non-local information of a single sample and the relative non-local information of the sample pairs. Then, human body regions are divided horizontally into static blocks, micro-dynamic blocks and strong dynamic blocks to extract better local features according to the geometric characteristics of GEI. Furthermore, the segmented regions are connected to three binary classifiers for training respectively. Finally, experiments on OU-ISIR-LP and CASIA-B gait datasets show that the proposed method produces a higher correct recognition rate.
Key wordsGait Recognition    Cross-View Recognition    Non-local Features    Part-Level Features   
收稿日期: 2019-03-21     
ZTFLH: TP 391.4  
基金资助:国家自然科学基金项目(No.61602431,61303146)资助
通讯作者: 王修晖,博士,副教授,主要研究方向为模式识别、计算机视觉、计算机图形学.E-mail:wangxiuhui@cjlu.edu.cn.   
作者简介: 冯世灵,硕士研究生,主要研究方向为计算机视觉、模式识别.E-mail:fsl1994@163.com.
引用本文:   
冯世灵, 王修晖. 结合非局部与分块特征的跨视角步态识别[J]. 模式识别与人工智能, 2019, 32(9): 821-827. FENG Shiling, WANG Xiuhui. Cross-View Gait Recognition Combined with Non-local and Part-level Features. , 2019, 32(9): 821-827.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201909006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2019/V32/I9/821
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn