Rough Entropy and Knowledge Granularity Based on Cartesian Product of Double Universes
DENG Qie1,2, ZHANG Xianyong1,2, YANG Jilin2, CHEN Shuai1,2
1.School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066; 2.Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066
Abstract:According to the Cartesian product,the covering space on two-dimensional direct product universe is constructed, and the corresponding rough entropy and knowledge granularity are investigated. Firstly, two single-universe covering spaces are induced by double-universes approximate space, and two-dimensional covering space is constructed.Then, the rough entropy and knowledge granularity based on double-universes are positioned at a single-universe covering space, and the two measures are determined in covering spaces on symmetrical single-universe and compositive two-dimensional universe by structural simulation and granular replacement. For the three sets of double metrics, the double-metrics sum, supremum and infimum, granulation monotonicity and three-way linear combination are achieved. Finally, data simulation and simulation experiment verify the effectiveness of the measure construction and the theoretical properties.
[1] PAWLAK Z. Rough Sets. International Journal of Computer and Information Science, 1982, 11(5) : 341-356. [2] YAO Y Y. Interpretations of Belief Functions in the Theory of Rough Sets. Information Sciences, 1998, 104(1/2): 81-106. [3] SUN B Z, MA W M, QIAN Y H. Multigranulation Fuzzy Rough Set over Two Universes and Its Application to Decision Making. Know-ledge-Based Systems, 2017, 123: 61-74. [4] DAI J H, HAN H F, ZHANG X H, et al. Catoptrical Rough Set Model on Two Universes Using Granule-Based Definition and Its Va-riable Precision Extensions. Information Sciences, 2017, 390: 70-81. [5] HU J, LI T R, LUO C, et al. Incremental Fuzzy Probabilistic Rough Sets over Two Universes. International Journal of Approximate Reasoning, 2017, 81: 28-48. [6] TAN A H, WU W Z, SHI S W, et al. Granulation Selection and Decision Making with Multigranulation Rough Set over Two Universes. International Journal of Machine Learning and Cybernetics, 2019, 10(9): 2501-2513. [7] 胡志勇,米据生,冯 涛,等.双论域下多粒度模糊粗糙集上下近似的包含关系.智能系统学报, 2019, 14(1): 115-120. (HU Z Y, MI J S, FENG T, et al. Inclusion Relation of Upper and Lower Approximations of a Multigranularity Fuzzy Rough Set in Two Universes. CAAI Transactions on Intelligent Systems, 2019, 14(1): 115-120.) [8] 李同军,吴伟志,顾沈明.双论域上基于Brouwer-正交补的粗糙近似.南京大学学报(自然科学), 2016, 52(5): 871-878. (LI T J, WU W Z, GU S M. Rough Approximations Based on Brouwer-Orthocomplementations on Two Universes of Discourse. Journal of Nanjing University(Natural Sciences), 2016, 52(5): 871-878.) [9] 孙秉珍,胡晓元.双论域上量化粗糙集模型及应用.计算机工程与应用, 2017, 53(20): 50-55. (SUN B Z, HU X Y. Quantitative Rough Set Model over Two Universes and Its Application. Computer Engineering and Applications, 2017, 53(20): 50-55.) [10] 李 敬,王利东.面向不完备信息系统的双论域决策粗糙集——基于双相对量化信息的角度.计算机科学与探索, 2018, 12(4): 653-661. (LI J, WANG L D. Decision-Theoretic Rough Sets on Two Universes within Incomplete Information System: From the View of Dou-ble Relative Quantitative Information. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 653-661.) [11] 孙文鑫.双论域的一般多粒度粗糙集.计算机工程与应用, 2017, 53(4): 79-83. (SUN W X. General Multi-granulation Rough Set over Two Universes. Computer Engineering and Applications, 2017, 53(4): 79-83.) [12] 张 超,李德玉,翟岩慧.双论域上的犹豫模糊语言多粒度粗糙集及其应用.控制与决策, 2017, 32(1): 105-110. (ZHANG C, LI D Y, ZHAI Y H. Hesitant Fuzzy Linguistic Multigranulation Rough Set over Two Universes and Its Application. Control and Decision, 2017, 32(1): 105-110.) [13] ZHANG X Y, MIAO D Q. Three-Layer Granular Structures and Three-Way Informational Measures of a Decision Table. Information Sciences, 2017, 412/413: 67-86. [14] 王国胤,张清华.不同知识粒度下粗糙集的不确定性研究.计算机学报, 2008, 31(9): 1588-1598. (WANG G Y, ZHANG Q H. Uncertainty of Rough Sets in Diffe-rent Knowledge Granularities. Chinese Journal of Computers, 2008, 31(9): 1588-1598.) [15] 梁吉业,钱宇华.信息系统中的信息粒与熵理论.中国科学(信息科学), 2008, 38(12): 2048-2065. (LIANG J Y, QIAN Y H. Information Granule and Entropy Theory in Information System. Science in China(Information Sciences), 2008, 38(12): 2048-2065.) [16] 胡 军,王国胤.粗糙集的不确定性度量准则.模式识别与人工智能, 2010, 23(5): 606-615. (HU J, WANG G Y. Uncertainty Measure Rule Sets of Rough Sets. Pattern Recognition and Artificial Intelligence, 2010, 23(5): 606-615.) [17] 杨霁琳,张贤勇,唐 孝.模糊决策表中基于OWA算子的三支属性约简.数据采集与处理, 2018, 33(4): 712-721. (YANG J L, ZHANG X Y, TANG X. Three-Way Attribute Reductions Based on OWA Operator in Fuzzy Decision Table. Journal of Data Acquisition and Processing, 2018, 33(4): 712-721.) [18] 陈颖悦,陈玉明.基于信息熵与蚁群优化的属性约简算法.小型微型计算机系统, 2015, 36(3): 586-590. (CHEN Y Y, CHEN Y M. Attribute Reduction Algorithm Based on Information Entropy and Ant Colony Optimization. Journal of Chinese Computer Systems, 2015, 36(3): 586-590.) [19] MA W M, SUN B Z. Probabilistic Rough Set over Two Universes and Rough Entropy. International Journal of Approximate Reaso-ning, 2012, 53(6): 608-619. [20] 袁晓娟.基于粒计算的双论域粗糙集模型研究.硕士学位论文.兰州:兰州大学, 2010. (YUAN X J. Research of Rough Sets Model on Double Universes Based on Granular Computing. Master Dissertation. Lanzhou, China: Lanzhou University, 2010.) [21] 王 军.基于双论域上的不确定性问题的研究.硕士学位论文.临汾:山西师范大学, 2010. (WANG J. The Research of the Uncertainty Quest under the Dominance Relation. Master Dissertation. Linfen, China: Shanxi Normal University, 2010.) [22] LIU C H, MIAO D Q, ZHANG N. Grade Rough Set Model Based on Two Universes and Its Properties. Knowledge-Based Systems, 2012, 33: 65-72.