模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2021, Vol. 34 Issue (9): 836-843    DOI: 10.16451/j.cnki.issn1003-6059.202109006
“深度学习算法及在图像与视觉的应用”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于残差边卷积的3D点云分类算法
杜子金1, 曹飞龙1, 叶海良1, 梁吉业2
1.中国计量大学 理学院 杭州 310018
2.山西大学 计算智能与中文信息处理教育部重点实验室 太原 030006
3D Point Cloud Classification Algorithm Based on Residual Edge Convolution
DU Zijin1, CAO Feilong1, YE Hailiang1, LIANG Jiye2
1. College of Sciences, China Jiliang University, Hangzhou 310018
2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006

全文: PDF (1050 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 3D点云的不规则性与无序性使点云的分类仍具有挑战性.针对上述问题,文中设计基于残差边卷积的3D点云分类算法,可直接从点云学习到具有区分度的形状描述子,用于目标分类.首先,设计具有残差学习的边卷积模块,用于点云的特征提取.通过K近邻算法,该边卷积模块在输入点云上构建局部图,使用卷积及最大池化进行局部特征的提取与聚合.然后,通过多层感知器从原始点特征中提取全局特征,并以残差学习的方式与局部特征结合.最后,以该卷积块为基本单元,构建深度神经卷积网络,实现3D点云的分类.文中方法较全面地考虑点云局部特征与全局特征的有机结合,网络具有更深层次的结构,最终得到的形状描述子更抽象,具有更高的区分度.在具有挑战性的ModelNet40、ScanObjectNN数据集上的实验证实文中方法的分类性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜子金
曹飞龙
叶海良
梁吉业
关键词 深度学习卷积神经网络分类点云    
Abstract:The irregularity and disorder of 3D point cloud make the classification of point cloud more challenging. Therefore, a 3D point cloud classification algorithm based on residual edge convolution is designed. The discriminative shape descriptor can be learned from the point cloud directly and used for target classification. Firstly, an edge convolution block with residual learning is designed for feature extraction on the point cloud. In the edge convolution block, local graph is constructed with the input point cloud through the K-nearest neighbor algorithm and the local features are extracted and aggregated via convolution and maximum pooling, respectively. Subsequently, global features are extracted from the original point features through the multi-layer perceptron and combined with the local features in a residual learning way. Finally, a deep neural convolution network is constructed with the convolution block regarded as the basic unit to realize the classification of 3D point cloud. The organic combination of local features and global features is considered comprehensively. With a deeper structure, the network makes the final shape descriptor more abstract and discriminative. Experiments on two challenging datasets, ModelNet40 and ScanObjectNN, show that the proposed method obtains superior classification results.
Key wordsDeep Learning    Convolutional Neural Network    Classification    Point Cloud   
收稿日期: 2021-02-08     
ZTFLH: TP 391  
基金资助:国家自然科学基金项目(No.62032022,62006215,61876103) 资助
通讯作者: 曹飞龙,博士,教授,主要研究方向为深度学习、图像处理等.E-mail:feilongcao@gmail.com.   
作者简介: 杜子金,硕士研究生,主要研究方向为深度学习、点云分析等.E-mail:thetempest0302@163.com.
叶海良,博士,讲师,主要研究方向为深度学习、图像处理.E-mail:yhl575@163.com.
梁吉业,博士,教授,主要研究方向为人工智能、粒计算、数据挖掘等.E-mail:ljy@sxu.edu.cn.
引用本文:   
杜子金, 曹飞龙, 叶海良, 梁吉业. 基于残差边卷积的3D点云分类算法[J]. 模式识别与人工智能, 2021, 34(9): 836-843. DU Zijin, CAO Feilong, YE Hailiang, LIANG Jiye. 3D Point Cloud Classification Algorithm Based on Residual Edge Convolution. , 2021, 34(9): 836-843.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202109006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2021/V34/I9/836
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn