模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (2): 150-165    DOI: 10.16451/j.cnki.issn1003-6059.202202006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于自适应鲸鱼优化算法和容错邻域粗糙集的特征选择算法
孙林1,2, 黄金旭1, 徐久成1, 马媛媛1
1.河南师范大学 计算机与信息工程学院 新乡 453007;
2.河南师范大学 智慧商务与物联网技术河南省工程实验室 新乡 453007
Feature Selection Based on Adaptive Whale Optimization Algorithm and Fault-Tolerance Neighborhood Rough Sets
SUN Lin1,2, HUANG Jinxu1, XU Jiucheng1, MA Yuanyuan1
1. College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007;
2. Henan Engineering Laboratory of Smart Business and Internet of Things Technology, Henan Normal University, Xinxiang 453007

全文: PDF (883 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对传统鲸鱼优化算法(WOA)不能有效处理连续型数据、邻域粗糙集对噪声数据的容错性较差等问题,文中提出基于自适应WOA和容错邻域粗糙集的特征选择算法.首先,为了避免WOA过早陷入局部最优,基于迭代周期构建分段式动态惯性权重,改进WOA的收缩包围和螺旋捕食行为,设计自适应WOA.然后,为了解决邻域粗糙集对噪声数据缺乏容错性的问题,引入邻域内相同决策特征所占的比例,定义容错邻域上下近似集、容错近似精度和近似粗糙度、容错依赖度及容错近似条件熵.最后,基于容错邻域粗糙集构造适应度函数,使用自适应WOA,不断迭代以获取最优子群.高维数据集上采用费雪评分算法进行初步降维,降低算法的时间复杂度.在8个低维UCI数据集和6个高维基因数据集上的实验表明,文中算法可有效选择特征个数较少且分类精度较高的特征子集.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙林
黄金旭
徐久成
马媛媛
关键词 鲸鱼优化算法(WOA)特征选择邻域粗糙集邻域熵适应度函数    
Abstract:Traditional whale optimization algorithm(WOA) cannot handle continuous data effectively, and the tolerance of neighborhood rough sets(NRS) for noise data is poor. To address the issues, an algorithm of feature selection based on adaptive WOA and fault-tolerance NRS is presented. Firstly, a piecewise dynamic inertia weight based on iteration cycle is proposed to prevent the WOA from falling into local optimum prematurely. The shrinkage enveloping and spiral predation behaviors of WOA are improved, and an adaptive WOA is designed. Secondly, the ratio of the same decision features in the neighborhood is introduced to make up for the fault tolerance lack of NRS model for noise data, and the upper and lower approximations, approximation precision and approximation roughness, fault-tolerance dependence and approximation conditional entropy of fault-tolerance neighborhood are defined. Finally, a fitness function is constructed based on the fault-tolerance NRS, and then the adaptive WOA searches for the optimal feature subset through continuous iterations. The Fisher score is employed to reduce the dimensions of high-dimensional datasets preliminarily and the time complexity of the proposed algorithm effectively. The proposed algorithm is tested on 8 low-dimensional UCI datasets and 6 high-dimensional gene datasets. Experimental results demonstrate that the proposed algorithm selects fewer features effectively with high classification accuracy.
Key wordsWhale Optimization Algorithm(WOA)    Feature Selection    Neighborhood Rough Sets    Neighborhood Entropy    Fitness Function   
收稿日期: 2021-09-22     
ZTFLH: TP 311  
基金资助:国家自然科学基金项目(No.62076089,61976082,62002103)、河南省科技攻关项目(No.212102210136)资助
通讯作者: 孙林,博士,副教授,主要研究方向为粒计算、大数据挖掘、生物信息学.E-mail:sunlin@htu.edu.cn.   
作者简介: 黄金旭,硕士研究生,主要研究方向为数据挖掘.E-mail:983993140@qq.com.徐久成,博士,教授,主要研究方向为粒计算、大数据挖掘、智能信息处理.E-mail:xjc@htu.edu.cn.马媛媛,博士,副教授,主要研究方向为粒计算、智能信息处理.E-mail:mayuanyuan@htu.edu.cn.
引用本文:   
孙林, 黄金旭, 徐久成, 马媛媛. 基于自适应鲸鱼优化算法和容错邻域粗糙集的特征选择算法[J]. 模式识别与人工智能, 2022, 35(2): 150-165. SUN Lin, HUANG Jinxu, XU Jiucheng, MA Yuanyuan. Feature Selection Based on Adaptive Whale Optimization Algorithm and Fault-Tolerance Neighborhood Rough Sets. Pattern Recognition and Artificial Intelligence, 2022, 35(2): 150-165.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202202006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I2/150
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn