模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (9): 805-815    DOI: 10.16451/j.cnki.issn1003-6059.202209004
“粒计算与知识获取”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于双空间模糊邻域相似关系的多标记特征选择
徐久成1,2, 申凯丽1,2
1. 河南师范大学 计算机与信息工程学院 新乡 453007;
2. 河南师范大学 智慧商务与物联网技术河南工程实验室 新乡 453007;
Multi-label Feature Selection Based on Fuzzy Neighborhood Similarity Relations in Double Spaces
XU Jiucheng1,2, SHEN Kaili1,2
1. College of Computer and Information Engineering, Henan Nor-mal University, Xinxiang, 453007;
2. Engineering Lab of Intelligence Business and Internet of Things of Henan Province, Henan Normal University, Xinxiang, 453007

全文: PDF (567 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对基于粗糙集的大部分多标记特征选择方法存在的忽略样本的模糊性和邻域关系、手动设置邻域半径、从单一的样本空间度量属性重要度等问题,文中利用模糊邻域粗糙集弥补经典粗糙集的不足,并在此基础上从特征空间和标记空间出发,提出基于双空间模糊邻域相似关系的多标记特征选择算法.首先,设计自适应邻域半径的计算方法,构建特征空间下样本的模糊邻域相似矩阵.再根据模糊邻域相似关系,得出特征空间下的样本相似度及标记空间下的样本相似度.然后,通过权重将特征空间和标记空间上的样本相似度进行融合,基于融合后的度量计算属性重要度.最后,运用前向贪心算法构建多标记特征选择算法.在12个多标记数据集上的对比实验验证文中算法的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐久成
申凯丽
关键词 多标记特征选择模糊邻域相似关系模糊邻域粗糙集自适应邻域半径不确定性度量    
Abstract:In most of the current rough set based multi-label feature selection algorithms, sample fuzziness and neighborhood relationship are ignored, the neighborhood radius needs setting manually, and attribute importance is measured in a single space. To overcome the defects of classical rough set algorithms, an algorithm of multi-label feature selection based on fuzzy neighborhood similarity in double spaces is proposed from the perspectives of feature space and label space. Firstly, an adaptive neighborhood radius calculation method is proposed and fuzzy neighborhood similarity matrix of samples in feature space is constructed. Secondly, similarities of sample in feature space and label space are obtained according to fuzzy neighborhood similarity relations. Then, the sample similarities in feature space and label space are fused by introducing weights and the attribute importance is calculated based on the fused measures. Finally, a multi-label feature selection algorithm is constructed via the forward greedy algorithm. The effectiveness of the proposed algorithm is confirmed on twelve multi-label datasets.
Key wordsMulti-label Feature Selection    Fuzzy Neighborhood Similarity Relation    Fuzzy Neighborhood Rough Set    Adaptive Neighborhood Radius    Uncertainty Measurement   
收稿日期: 2022-07-18     
ZTFLH: TP 18  
基金资助:国家自然科学基金项目(No.61976082,62076089,62002103)资助
通讯作者: 徐久成,博士,教授,主要研究方向为数据挖掘、粒计算、生物信息学.E-mail:xjc@htu.edu.cn.   
作者简介: 申凯丽,硕士研究生,主要研究方向为粗糙集、生物信息学.E-mail:shenkaili@stu.htu.edu.cn.
引用本文:   
徐久成, 申凯丽. 基于双空间模糊邻域相似关系的多标记特征选择[J]. 模式识别与人工智能, 2022, 35(9): 805-815. XU Jiucheng, SHEN Kaili. Multi-label Feature Selection Based on Fuzzy Neighborhood Similarity Relations in Double Spaces. Pattern Recognition and Artificial Intelligence, 2022, 35(9): 805-815.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202209004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I9/805
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn