[1] LIN B Y, ZHANG X Y, XU W H, et al. Dynamically Updating Approximations Based on Multi-threshold Tolerance Relation in Incomplete Interval-Valued Decision Information Systems. Knowledge and Information Systems, 2020, 62(3): 1063-1087.
[2] MI Y L, SHI Y, LI J H, et al. Fuzzy-Based Concept Learning Method: Exploiting Data with Fuzzy Conceptual Clustering. IEEE Transactions on Cybernetics, 2020, 52(1): 582-593.
[3] TSANG E C C, FAN B J, CHEN D G, et al.Multi-level Cognitive Concept Learning Method Oriented to Data Sets with Fuzziness: A Perspective from Features. Soft Computing, 2020, 24(5): 3753-3770.
[4] ZHANG Q, SHI C Y, NIU Z D, et al. HCBC: A Hierarchical Case-Based Classifier Integrated with Conceptual Clustering. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(1): 152-165.
[5] ZOU C F, DENG H F, WAN J F, et al. Mining and Updating Association Rules Based on Fuzzy Concept Lattice. Future Generation Computer Systems, 2018, 82: 698-706.
[6] WILLE R.Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts // RIVAL I, ed. Ordered Sets. Berlin, Germany: Springer, 1982: 445-470.
[7] GANTER B, WILLE R, FRANZKE C.Formal Concept Analysis: Mathematical Foundations. Berlin, Germany: Springer: 1999.
[8] LI J H, MEI C L, XU W H, et al. Concept Learning via Granular Computing: A Cognitive Viewpoint. Information Sciences, 2015, 298: 447-467.
[9] LONG B H, XU W H, ZHANG X Y, et al. The Dynamic Update Method of Attribute-Induced Three-Way Granular Concept in Formal Contexts. International Journal of Approximate Reasoning, 2020, 126: 228-248.
[10] WEI L, LIU L, QI J J, et al. Rules Acquisition of Formal Decision Contexts Based on Three-Way Concept Lattices. Information Sciences, 2020, 516: 529-544.
[11] XU W H, LI W T.Granular Computing Approach to Two-Way Lear-ning Based on Formal Concept Analysis in Fuzzy Datasets. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379.
[12] ZHAO Y X, LI J H, LIU W Q, et al. Cognitive Concept Learning from Incomplete Information. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 159-170.
[13] ZHI H L, LI J H.Granule Description Based Knowledge Discovery from Incomplete Formal Contexts via Necessary Attribute Analysis. Information Sciences, 2019, 485: 347-361.
[14] CROSS V, KANDASAMY M.Fuzzy Concept Lattice Construction: A Basis for Building Fuzzy Ontologies // Proc of the IEEE International Conference on Fuzzy Systems. Washington, USA: IEEE, 2011: 1743-1750.
[15] LI W T, PEDRYCZ W, XUE X P, et al. Fuzziness and Incremental Information of Disjoint Regions in Double-Quantitative Decision-Theoretic Rough Set Model. International Journal of Machine Learning and Cybernetics, 2019, 10(10): 2669-2690.
[16] AVIGAD G, MOSHAIOV A.Interactive Evolutionary Multiobjective Search and Optimization of Set-Based Concepts. IEEE Transactions on Systems, Man, and Cybernetics(Cybernetics), 2009, 39(4): 1013-1027.
[17] 李金海,米允龙,刘文奇.概念的渐进式认知理论与方法.计算机学报, 2019, 42(10): 2233-2250.
(LI J H, MI Y L, LIU W Q.Incremental Cognition of Concepts: Theories and Methods. Chinese Journal of Computers, 2019, 42(10): 2233-2250.)
[18] 李金海,闫梦宇,徐伟华,等.概念认知学习的若干问题与思考.西北大学学报(自然科学版), 2020, 50(4): 501-515.
(LI J H, YAN M Y, XU W H, et al. Some Problems and Thoughts on Concept-Cognitive Learning. Journal of Northwest University(Natural Science Edition), 2020, 50(4): 501-515.)
[19] 徐伟华,杨蕾,张晓燕.模糊三支形式概念分析与概念认知学习.西北大学学报(自然科学版), 2020, 50(4): 516-528.
(XU W H, YANG L, ZHANG X Y.Fuzzy Three-Way Formal Concept Analysis and Concept-Cognitive Learning. Journal of Northwest University(Natural Science Edition), 2020, 50(4): 516-528.)
[20] MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S, et al. A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 4-19.
[21] DRAGONI M.An Evolutionary Strategy for Concept-Based Multi-domain Sentiment Analysis. IEEE Computational Intelligence Magazine, 2019, 14(2): 18-27.
[22] SHI Y, MI Y L, LI J H, et al. Concurrent Concept-Cognitive Learning Model for Classification. Information Sciences, 2019, 496: 65-81.
[23] ZHANG T, LI H H, LIU M Q, et al. Incremental Concept-Cognitive Learning Based on Attribute Topology. International Journal of Approximate Reasoning, 2020, 118: 173-189.
[24] WANG J H, ZHANG D P, LIANG L N.A Classification Model with Cognitive Reasoning Ability. Symmetry, 2022, 14(5). DOI: 10.3390/sym14051034.
[25] YAN E L, YU C G, LU L M, et al. Incremental Concept Cognitive Learning Based on Three-Way Partial Order Structure. Know-ledge-Based Systems, 2021, 220. DOI: 10.1016/j.knosys.2021.106898.
[26] MI Y L, QUAN P, SHI Y, et al. Concept-Cognitive Computing System for Dynamic Classification. European Journal of Operational Research, 2022, 301(1): 287-299.
[27] XU W H, CHEN Y Q.Multi-attention Concept-Cognitive Learning Model: A Perspective from Conceptual Clustering. Knowledge-Based Systems, 2022, 252. DOI: 10.1016/j.knosys.2022.109472.
[28] YUAN K H, XU W H, LI W T, et al. An Incremental Learning Mechanism for Object Classification Based on Progressive Fuzzy Three-Way Concept. Information Sciences, 2022, 584: 127-147.
[29] ELHADAD A, GHAREEB A, ABBAS S.A Blind and High-Capacity Data Hiding of DICOM Medical Images Based on Fuzzification Concepts. Alexandria Engineering Journal, 2021, 60(2): 2471-2482.
[30] FRIEDMAN M.A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The Annals of Mathematical Statistics, 1940, 11(1): 86-92.
[31] DEMŠAR J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, 2006, 7(1): 1-30. |